首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halogen bonding refers to the non-covalent interactions of halogen atoms X in some molecules, RX, with negative sites on others. It can be explained by the presence of a region of positive electrostatic potential, the σ-hole, on the outermost portion of the halogen’s surface, centered on the R–X axis. We have carried out a natural bond order B3LYP analysis of the molecules CF3X, with X = F, Cl, Br and I. It shows that the Cl, Br and I atoms in these molecules closely approximate the configuration, where the z-axis is along the R–X bond. The three unshared pairs of electrons produce a belt of negative electrostatic potential around the central part of X, leaving the outermost region positive, the σ-hole. This is not found in the case of fluorine, for which the combination of its high electronegativity plus significant sp-hybridization causes an influx of electronic charge that neutralizes the σ-hole. These factors become progressively less important in proceeding to Cl, Br and I, and their effects are also counteracted by the presence of electron-withdrawing substituents in the remainder of the molecule. Thus a σ-hole is observed for the Cl in CF3Cl, but not in CH3Cl. Figure Schematic representation of the atomic charge generation. The molecular electrostatic potential (MEP) is calculated using the AM1* Hamiltonian. The semiempirical MEP is then scaled to DFT or ab initio level and atomic charges are generated from it by the restrained electrostatic potential (RESP) fit method.  相似文献   

2.
The term “σ-hole” originally referred to the electron-deficient outer lobe of a half-filled p (or nearly p) orbital involved in forming a covalent bond. If the electron deficiency is sufficient, there can result a region of positive electrostatic potential which can interact attractively (noncovalently) with negative sites on other molecules (σ-hole bonding). The interaction is highly directional, along the extension of the covalent bond giving rise to the σ-hole. σ-Hole bonding has been observed, experimentally and computationally, for many covalently-bonded atoms of Groups V–VII. The positive character of the σ-hole increases in going from the lighter to the heavier (more polarizable) atoms within a Group, and as the remainder of the molecule becomes more electron-withdrawing. In this paper, we show computationally that significantly positive σ-holes, and subsequent noncovalent interactions, can also occur for atoms of Group IV. This observation, together with analogous ones for the molecules (H3C)2SO, (H3C)2SO2 and Cl3PO, demonstrates a need to expand the interpretation of the origins of σ-holes: (1) While the bonding orbital does require considerable p character, in view of the well-established highly directional nature of σ-hole bonding, a sizeable s contribution is not precluded. (2) It is possible for the bonding orbital to be doubly-occupied and forming a coordinate covalent bond. Figure Two views of the calculated electrostatic potential on the 0.001 au molecular surface of SiCl4. Color ranges, in kcal/mole, are: purple, negative; blue, between 0 and 8; green, between 8 and 11; yellow, between 11 and 18; red, more positive than 18. The top view shows three of the four chlorines. In the center is the σ-hole due to the fourth Cl−Si bond, its most positive portion (red) being on the extension of that bond. In the bottom view are visible two of the σ-holes on the silicon. In both views can be seen the σ-holes on the chlorines, on the extensions of the Si−Cl bonds; their most positive portions are green  相似文献   

3.
The ETS-NOCV analysis was applied to describe the σ-hole in a systematic way in a series of halogen compounds, CF3-X (X?=?I, Br, Cl, F), CH3I, and C(CH3)nH3-n-I (n?=?1,2,3), as well as for the example germanium-based systems. GeXH3, X?=?F, Cl, H. Further, the ETS-NOCV analysis was used to characterize bonding with ammonia for these systems. The results show that the dominating contribution to the deformation density, Δρ 1 , exhibits the negative-value area with a minimum, corresponding to σ-hole. The “size” (spatial extension of negative value) and “depth” (minium value) of the σ-hole varies for different X in CF3-X, and is influenced by the carbon substituents (fluorine atoms, hydrogen atoms, methyl groups). The size and depth of σ-hole decreases in the order: I, Br, Cl, F in CF3-X. In CH3-I and C(CH3)nH3-n-I, compared to CF3-I, introduction of hydrogen atoms and their subsequent replacements by methyl groups lead to the systematic decrease in the σ-hole size and depth. The ETS-NOCV σ-hole picture is consistent with the existence the positive MEP area at the extension of σ-hole generating bond. Finally, the NOCV deformation density contours as well as by the ETS orbital-interaction energy indicate that the σ-hole-based bond with ammonia contains a degree of covalent contribution. In all analyzed systems, it was found that the electrostatic energy is approximately two times larger than the orbital-interaction term, confirming the indisputable role of the electrostatic stabilization in halogen bonding and σ-hole bonding.
Figure
Graphical representation of the σ-hole on the halogen atom, based on the molecular electrostatic potential (upper row) and the NOCV deformation-density channel Δρ 1 (lower row and the right-hand side plot)  相似文献   

4.
The positive electrostatic potentials (σ-hole) have been found in ylides CH2XH3 (X = P, As, Sb) and CH2YH2 (Y = S, Se, Te), on the outer surfaces of group VA and VIA atoms, approximately along the extensions of the C–X and C–Y bonds, respectively. These electrostatic potentials suggest that the above ylides can interact with nucleophiles to form weak, directional noncovalent interactions similar to halogen bonding interactions. MP2 calculations have confirmed the formation of CH2XH3···HM complexes (X = P, As, Sb; M = BeH, ZnH, MgH, Li, Na). The interaction energies, interaction distances, topological properties (electron density and its Laplacian), and energy properties (kinetic electron energy density and potential electron energy density) at the X(1)···H(10) bond critical points are all correlated with the most negative electrostatic potential value of HM, indicating that electrostatic interactions play an important role in these weak X···H interactions. Similar to the halogen bonding interactions, weak interactions involving ylides may be significant in several areas such as organic synthesis, crystal engineering, and design of new materials.  相似文献   

5.
It has been observed both experimentally and computationally that some divalently-bonded Group VI atoms interact in a noncovalent but highly directional manner with nucleophiles. We show that this can readily be explained in terms of regions of positive electrostatic potential on the outer surfaces of such atoms, these regions being located along the extensions of their existing covalent bonds. These positive regions can interact attractively with the lone pairs of nucleophiles. The existence of such a positive region is attributed to the presence of a “σ-hole.” This term designates the electron-deficient outer lobe of a half-filled p bonding orbital on the Group VI atom. The positive regions become stronger as the electronegativity of the atom decreases and its polarizability increases, and as the groups to which it is covalently bonded become more electron-withdrawing. We demonstrate computationally that the σ-hole concept and the outer regions of positive electrostatic potential account for the existence, directionalities and strengths of the observed noncovalent interactions. Figure Calculated B3PW91/6-31G** electrostatic potential of F2S, computed on the 0.001 electrons/bohr3 contour of the electronic density. The sulfur atom is toward the reader; the red areas indicate the most positive potentials, reaching +34.4 kcal/mole, along the extensions of the F-S bonds. The purple region (negative) on the left and the one (not totally visible) on the right side of the sulfur are due to its nonbonded s and p electrons. The fluorines (top left and bottom left) also have negative regions of potential (purple areas)  相似文献   

6.
Covalently bonded atoms, at least in Groups V–VII, may have regions of both positive and negative electrostatic potentials on their surfaces. The positive regions tend to be along the extensions of the bonds to these atoms; the origin of this can be explained in terms of the σ-hole concept. It is thus possible for such an atom in one molecule to interact electrostatically with its counterpart in a second, identical molecule, forming a highly directional noncovalent bond. Several examples are presented and discussed. Such “like-like” interactions could not be understood in terms of atomic charges assigned by any of the usual procedures, which view a bonded atom as being entirely positive or negative. Figure Calculated electrostatic potential on the surface of SCl2. The sulfur is in the foreground, the chlorines are at the back. Color ranges (kcal mol−1): purple negative, blue between 0 and 8, green between 8 and 15, yellow between 15 and 20, red more positive than 20. Note that the sulfur has regions of both positive (red) and negative (purple) electrostatic potential  相似文献   

7.
PqsD mediates the conversion of anthraniloyl-coenzyme A (ACoA) to 2-heptyl-4-hydroxyquinoline (HHQ), a precursor of the Pseudomonas quinolone signal (PQS) molecule. Due to the role of the quinolone signaling pathway of Pseudomonas aeruginosa in the expression of several virulence factors and biofilm formation, PqsD is a potential target for controlling this nosocomial pathogen, which exhibits a low susceptibility to standard antibiotics. PqsD belongs to the β-ketoacyl-ACP synthase family and is similar in structure to homologous FabH enzymes in E. coli and Mycobacterium tuberculosis. Here, we used molecular dynamics simulations to obtain the structural position of the substrate ACoA in the binding pocket of PqsD, and semiempirical molecular orbital calculations to study the reaction mechanism for the catalytic cleavage of ACoA. Our findings suggest a nucleophilic attack of the deprotonated sulfur of Cys112 at the carbonyl carbon of ACoA and a switch in the protonation pattern of His257 whereby Nδ is protonated and the proton of Nε is shifted to the sulfur of CoA during the reaction. This is in agreement with the experimentally determined decreased catalytic activity of the Cys112Ser mutant, whereas the Cys112Ala, His257Phe, and Asn287Ala mutants are all inactive. ESI mass-spectrometric measurements of the Asn287Ala mutant show that anthraniloyl remains covalently bound to Cys112, thus further supporting the inference from our computed mechanism that Asn287 does not take part in the cleavage of ACoA. Since this mutant is inactive, we suggest instead that Asn287 must play an essential role in the subsequent formation of HHQ in vitro.  相似文献   

8.
σ-Hole bonding is a noncovalent interaction between a region of positive electrostatic potential on the outer surface of a Group V, VI, or VII covalently-bonded atom (a σ-hole) and a region of negative potential on another molecule, e.g., a lone pair of a Lewis base. We have investigated computationally the occurrence of increased vibration frequencies (blue shifts) and bond shortening vs decreased frequencies (red shifts) and bond lengthening for the covalent bonds to the atoms having the σ-holes (the σ-hole donors). Both are possible, depending upon the properties of the donor and the acceptor. Our results are consistent with models that were developed earlier by Hermansson and by Qian and Krimm in relation to blue vs red shifting in hydrogen bond formation. These models invoke the derivatives of the permanent and the induced dipole moments of the donor molecule. Figure Computed electrostatic potential on the molecular surface of Cl-NO2. Color ranges, in kcal mol−1, are: red, greater than 25; yellow, between 10 and 25; green, between 0 and 10; blue, between −4 and 0; purple, more negative than −4. The chlorine is facing the viewer, to the right. Note the yellow region of positive potential on the outer side of the chlorine, along the extension of the N–Cl bond. The blue region shows the sides of the chlorine to have negative potentials. The calculations were at the B3PW91/6–31G(d,p) level.  相似文献   

9.
We discuss the possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity. The parallelism of the fossil records of marine phytoplankton and faunal biodiversity implicates the quantity (primary productivity) and quality (stoichiometry) of phytoplankton as being critical to the diversification of the marine biosphere through the Phanerozoic. The relatively subdued marine biodiversity of the Palaeozoic corresponds to a time of relatively low macronutrient availability and poor food quality of the phytoplankton as opposed to the diversification of the Modern Fauna through the Mesozoic–Cenozoic. Increasing nutrient runoff to the oceans through the Phanerozoic resulted from orogeny, the emplacement of Large Igneous Provinces (LIPs), the evolution of deep-rooting forests and the appearance of more easily decomposable terrestrial organic matter that enhanced weathering. Positive feedback by bioturbation of an expanding benthos played a critical role in evolving biogeochemical cycles by linking the oxidation of dead organic matter and the recycling of nutrients back to the water column where they could be re-utilized. We assess our conclusions against a recently published biogeochemical model for geological time-scales. Major peaks of marine diversity often occur near rising or peak fluxes of silica, phosphorus and dissolved reactive oceanic phosphorus; either major or minor 87Sr/86Sr peaks; and frequently in the vicinity of major (Circum-Atlantic Magmatic Province) and minor volcanic events, some of which are associated with Oceanic Anoxic Events. These processes appear to be scale-dependent in that they lie on a continuum between biodiversification on macroevolutionary scales of geological time and mass extinction.  相似文献   

10.
Batesian mimicry is the resemblance between unpalatable models and palatable mimics. The widely accepted idea is that the frequency and the unprofitability of the model are crucial for the introduction of a Batesian mimic into the prey population. However, experimental evidence is limited and furthermore, previous studies have considered mainly perfect mimicry (automimicry). We investigated imperfect Batesian mimicry by varying the frequency of an aposematic model at two levels of distastefulness. The predator encountered prey in a random order, one prey item at a time. The prey were thus presented realistically in a sequential way. Great tits (Parus major) were used as predators. This experiment, with a novel signal, supports the idea that Batesian mimics gain most when the models outnumber them. The mortalities of the mimics as well as the models were significantly dependent on the frequency of the model. Both prey types survived better the fewer mimics there were confusing the predator. There were also indications that the degree of distastefulness of the model had an effect on the survival of the Batesian mimic: the models survived significantly better the more distasteful they were. The experiment supports the most classical predictions in the theories of the origin and maintenance of Batesian mimicry.  相似文献   

11.
Diplozoidae and Octomacridae are usually considered as sister families. Essentially this is because they are the only polyopisthocotyleans parasitising primary freshwater teleosts. Because of the lack of phylogenetically informative morphological characters to explore the pattern of colonisation of the primary continental freshwater teleosts and in order to understand the appearance of the "natural parabiosis" of Diplozoidae, a molecular phylogeny was inferred by comparing newly obtained partial 28S and 18S rDNA gene sequences of Eudiplozoon nipponicum and Diplozoon homoion with other already available sequences. The phylogenetic analysis seems to show that Diplozoidae and Octomacridae are not sister groups. Thus, the colonisation of primary freshwater teleosts by these two families could be independent.  相似文献   

12.
13.
Phytochemicals: the good, the bad and the ugly?   总被引:2,自引:0,他引:2  
Molyneux RJ  Lee ST  Gardner DR  Panter KE  James LF 《Phytochemistry》2007,68(22-24):2973-2985
Phytochemicals are constitutive metabolites that enable plants to overcome temporary or continuous threats integral to their environment, while also controlling essential functions of growth and reproduction. All of these roles are generally advantageous to the producing organisms but the inherent biological activity of such constituents often causes dramatic adverse consequences in other organisms that may be exposed to them. Nevertheless, such effects may be the essential indicator of desirable properties, such as therapeutic potential, especially when the mechanism of bioactivity can be delineated. Careful observation of cause and effect, followed by a coordinated approach to identify the responsible entities, has proved extremely fruitful in discovering roles for phytochemical constituents. The process is illustrated by selected examples of plants poisonous to animals and include the steroidal alkaloid toxin of Veratrum californicum (Western false hellebore), piperidine alkaloids of Lupinus species (lupines), and polyhydroxy indolizidine, pyrrolizidine and nortropane alkaloids of Astragalus and Oxytropis species (locoweeds), Castanospermum australe (Moreton Bay chestnut) and Ipomoea species (morning glories).  相似文献   

14.
15.
1. The developmental pattern and effect of cortisone on acid beta-galactosidase and neutral beta-galactosidase were studied in postnatal rats by a recently proposed method for their independent determination. 2. After birth the acid beta-galactosidase activity increases in the ileum, whereas it decreases slightly in the jejunum. On day 16 after birth the activity in the ileum decreases and in 20-day-old rats activity in both parts of the intestine decreases to adult values. In suckling animals the activity in the ileum exceeds the jejunal activity severalfold and in adult animals the activity in the jejunum is slightly higher than that in the ileum. 3. Neutral beta-galactosidase activity is high after birth and decreases in both jejunum and ileum after day 20 after birth. In 12-20-day-old rats activity in both parts is essentially the same, but in adult animals jejunal activity exceeds ileal activity four-to five-fold. 4. Cortisone (0.5, 2.0 or 5.0mg/100g body wt. daily for 4 days) does not influence the activity of either enzyme in 60-day-old rats. Acid beta-galactosidase activity is decreased after cortisone treatment in 8-, 12-, 16-and 18-day-old rats, with sensitivity to cortisone increasing with the approach of weaning. No effect of cortisone on acid beta-galactosidase is seen in 8-day-old rats. Neutral beta-galactosidase activity is increased in the ileum of 8-, 12-, 16- and 18-day old rats, but only in the jejunum of 8-and 12-day-old rats.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号