首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pacific salmon (Oncorhynchus spp.) perform important ecological roles in stream ecosystems by provisioning nutrients as resource subsidies and modifying their physical habitat as ecosystem engineers. These contrasting roles result in concurrent nutrient enrichment and benthic disturbance, where local environmental characteristics potentially determine which effect predominates. Whole-stream metabolism quantifies the functional response to salmon and may identify patterns in enrichment and disturbance not apparent from structural measurements alone. We measured ecosystem respiration (ER) and gross primary production (GPP), along with chemical and physical characteristics, in seven Southeast Alaska streams and two Michigan streams, before and during the salmon run. These streams in the native and introduced ranges of salmon differed in environmental characteristics, from geomorphology at the reach scale to climate at the biome scale. Salmon consistently increased ER across streams and biomes, from an average (±SE) of 1.92 ± 0.23 g O2 m?2 d?1 before salmon to 6.30 ± 1.08 g O2 m?2 d?1 during the run. In the cobble-bottom streams of Southeast Alaska, GPP doubled from 0.29 ± 0.05 g O2 m?2 d?1 before salmon to 0.66 ± 0.16 g O2 m?2 d?1 during the run. In contrast, GPP responded inconsistently to salmon in the sand-bottom Michigan streams, increasing in one and decreasing in the other. Patterns in ER and GPP among streams and time periods were predicted by stream water nutrients (for example, ammonium, soluble reactive phosphorus) rather than by physical characteristics (for example, light, sediment size, and so on). This study demonstrates that salmon can periodically override physical controls on ER and GPP and enhance whole-stream metabolism via their dual ecological roles as both resource subsidies and ecosystem engineers.  相似文献   

2.
Urbanization has resulted in the extensive burial and channelization of headwater streams, yet little is known about the impacts of stream burial on ecosystem functions critical for reducing downstream nitrogen (N) and carbon (C) exports. In order to characterize the biogeochemical effects of stream burial on N and C, we measured NO3 ? uptake (using 15N-NO3 ? isotope tracer releases) and gross primary productivity (GPP) and ecosystem respiration (ER) (using whole stream metabolism measurements). Experiments were carried out during four seasons, in three paired buried and open stream reaches, within the Baltimore Ecosystem Study Long-term Ecological Research site. Stream burial increased NO3 ? uptake lengths by a factor of 7.5 (p < 0.01) and decreased NO3 ? uptake velocity and areal NO3 ? uptake rate by factors of 8.2 (p < 0.05) and 9.6 (p < 0.001), respectively. Stream burial decreased GPP by a factor of 11.0 (p < 0.01) and decreased ER by a factor of 5.0 (p < 0.05). From fluorescence Excitation Emissions Matrices analysis, buried streams were found to have significantly altered C quality, showing less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage (TS) and water temperatures. Differences in NO3 ? uptake, GPP, and ER in buried streams, were primarily explained by decreased TS, light availability, and C quality, respectively. At the watershed scale, we estimate that stream burial decreases NO3 ? uptake by 39 % and C production by 194 %. Overall, our results suggest that stream burial significantly impacts NO3 ? uptake, stream metabolism, and the quality of organic C exported from watersheds. Given the large impacts of stream burial on stream ecosystem processes, daylighting or de-channelization of streams, through hydrologic floodplain reconnection, may have the potential to alter ecosystem functions in urban watersheds, when used appropriately.  相似文献   

3.
Temperature and the metabolic balance of streams   总被引:1,自引:0,他引:1  
1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment’ to demonstrate the role of temperature and nutrient cycling in whole‐system metabolism (ER, GPP and net ecosystem production – NEP), in naturally heated geothermal (5–25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1–25 g C m?2 day?1 and GPP 1–10 g C m?2 day?1. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year?1 at 13 °C to 0.21 (0.15–0.33) Pg C year?1 with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO2 flux back to the atmosphere.  相似文献   

4.
Weather variations change stream hydrological conditions, affecting the stream function. A seasonal study in three well-conserved first-order Pampean streams was carried out to test the hypothesis that rainfalls are the main drivers of whole-stream metabolism, through their effects on hydrology. We estimated the stream metabolism and metabolic contribution of six relevant communities (angiosperms, macroalgae, seston, epiphyton, epipelon, and hyporheos) during late spring, summer, and winter and examined the relation between gross primary production (GPP) and photosynthetic active radiation (PAR). Our results showed that the decrease in available streambed light due to the dissolved organic carbon after rainfalls was the main factor related to the decrease in the ecosystem and community metabolisms. For instance, GPP oscillated from ~10 gO2 m?2 d?1 in early spring (low flows) to ~3 gO2 m?2 d?1 in summer (high flows). Ecosystem respiration (ER) was less sensitive than GPP to rainfalls due to the increase of hyporheic respiration. Rainfalls also caused a significant loss of downstream macroalgal biomass. At a day scale, the high PAR of late spring and summer saturated GPP during the afternoon, and the low temperature of winter mornings constrained GPP. Hence, the knowledge of weather changes is key to understanding the main hydrological drivers of stream function.  相似文献   

5.
1. Temporal variation in ecosystem metabolism over a 15‐year period (1986–2000) was evaluated in a seventh order channelised gravel bed river (mean annual discharge 48.7 m3 s?1) of the Swiss Plateau. The river is subject to frequent disturbance by bed‐moving spates. Daily integrals of gross primary production (GPP) and ecosystem respiration (ER) were calculated based on single‐station diel oxygen curves. 2. Seasonal decomposition of the time series of monthly metabolism rates showed that approximately 50% of the variation of GPP and ER can be attributed to season. Annual GPP averaged 5.0 ± 0.6 g O2 m?2 day?1 and showed no long‐term trend. 3. Ecosystem respiration, averaging 6.2 ± 1.4 g O2 m?2 day?1, declined from 8.8 to 4.1 g O2 m?2 day?1 during the 15‐year period. This significant trend paralleled a decline in nitrate and soluble reactive phosphorus concentrations, and the biochemical oxygen demand discharged by sewage treatment facilities upstream of the study reach. The ratio of GPP to ER (P/R) increased from 0.53 to about 1 as consequence of ER reduction. 4. Bed moving spates reduced GPP by 49% and ER by 19%. Postspate recovery of GPP was rapid between spring and autumn and slow during winter. Recovery of ER lacked any seasonal pattern. Annual patterns of daily GPP and to a minor extent of daily ER can be described as a sequence of recovery periods frequently truncated by spates. 5. The study showed that disturbance by frequent bed‐moving spates resulted in major stochastic variation in GPP and ER but annual patterns were still characterised by a distinct seasonal cycle. It also became evident that stream metabolism is a suitable method to assess effects of gradual changes in water quality.  相似文献   

6.
The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L?1 and DOC concentrations ranged from 0.26 to 5.39 mg C L?1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km?2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year?1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.  相似文献   

7.
Seasonal variation in gross primary production (GPP) of Utricularia foliosa Linnaeus, Egeria densa Planchon and Cabomba furcata Schult &; Schult.f. in rivers of the coastal plain of the state of São Paulo, Brazil was examined in relation to water physico-chemistry. These three species do not affect the multiple uses of the streams and are present throughout the year. The most productive was U. foliosa (maximum production 24.7 mgO2 g?1 DW h?1), while C. furcata had an intermediate GPP (maximum production 17.5 mgO2 g?1 DW h?1) and E. densa was lowest at 5.6 mgO2 g?1 DW h?1. Despite the low amplitude of seasonal variation in this south tropical area, the three species showed seasonal variation in the primary production: GPP was positively correlated with photosynthetic active radiation for U. foliosa and E. densa, and there was a negative correlation for C. furcata. For U. foliosa, GPP was positively correlated with temperature and dissolved inorganic carbon and the GPP of C. furcata was positively correlated with dissolved inorganic carbon.  相似文献   

8.
Ecosystem metabolism and nutrient uptake in an urban,piped headwater stream   总被引:1,自引:0,他引:1  
Piped streams, or streams that run underground, are often associated with urbanization. Despite the fact that they are ubiquitous in many urban watersheds, there is little empirical evidence regarding the ecological structure and function of piped stream reaches. This study measured ecosystem metabolism, nutrient uptake, and related characteristics of Pettee Brook—an urban stream that flows through several piped sections in Durham, New Hampshire, USA. Pettee Brook had high chloride and nutrient concentrations, low benthic biomass, and low rates of gross primary productivity (GPP), ecosystem respiration (ER), and nutrient uptake along its entire length during summer. Spring was a period of elevated biological activity, as increased light availability in the un-piped sections of the stream led to substantially higher GPP, ER, NH4 uptake, and PO4 uptake in these open reaches. Piped reaches of Pettee Brook were similar to open reaches in terms of water quality, dissolved O2 concentration, temperature, and discharge. Piped reaches did, however, have significantly less light, shallower sediments, and no debris dams. The absence of light inhibited autotrophic activity in piped reaches, resulting in the complete loss of GPP as well as a significant reduction in benthic AFDM and chlorophyll a biomass. Heterotrophic activity in piped reaches was not impaired to the same extent as autotrophic activity. Reduced ER was observed in piped reaches during the summer, but we failed to find significantly lower DOC or nutrient uptake rates in piped reaches than in open reaches. Carbon consumption in piped reaches, which do not have significant autochthonous or allochthonous carbon replenishment, must rely primarily on upstream inputs of organic matter. These results suggest that although ecological conditions in piped streams may be degraded beyond the extent of other urban stream reaches, piped reaches may still sustain some measurable ecosystem function.  相似文献   

9.
Pomacea flagellata is a gastropod conspicuous in freshwater environments, and represents a fishing resource. To assess their abundance, distribution, and secondary production, monthly samplings were carried out in Bacalar Lake from June 2012 to May 2013 at 12 sampling sites. In each site, three random transects were marked parallel to the shore. All snails on transect were collected and shell length and wet weight measured. The highest density occurred in September (1.27 ind.m?2), lowest in October (0.47 ind.m?2). Shell lengths ranged from 2 to 56 mm, with recruitment in January–March. Growth parameters were L 59.50 mm, K 0.65.year?1; the lifetime span was 3 years. Average biomass reached 5.57 wet g.m?2 and secondary production was 6.025 wet g.m?2.year-1; annual renewal rate P/B 1.08. Highest abundance and secondary production was contributed by individuals between 31 and 41 mm in length. A potential biomass of 25.06 tons of snails was estimated in the lake. Snail densities, secondary production, and turnover were very low during the year, indicating that it is not viable to consider a commercial catch without affecting the population. A ban of 10 years is proposed, and aquaculture practices of snails are recommended to recover the resource.  相似文献   

10.
1. Single‐station diel oxygen curves were used to monitor the oxygen metabolism of an intermittent, forested third‐order stream (Fuirosos) in the Mediterranean area, over a period of 22 months. Ecosystem respiration (ER) and gross primary production (GPP) were estimated and related to organic matter inputs and photosynthetically active radiation (PAR) in order to understand the effect of the riparian forest on stream metabolism. 2. Annual ER was 1690 g O2 m?2 year?1 and annual GPP was 275 g O2 m?2 year?1. Fuirosos was therefore a heterotrophic stream, with P : R ratios averaging 0.16. 3. GPP rates were relatively low, ranging from 0.05 to 1.9 g O2 m?2 day?1. The maximum values of GPP occurred during a few weeks in spring, and ended when the riparian canopy was fully closed. The phenology of the riparian vegetation was an important determinant of light availability, and consequently, of GPP. 4. On a daily scale, light and temperature were the most important factors governing the shape of photosynthesis–irradiance (P–I) curves. Several patterns could be generalised in the P–I relationships. Hysteresis‐type curves were characteristic of late autumn and winter. Light saturation responses (that occurred at irradiances higher than 90 μE m?2 s?1) were characteristic of early spring. Linear responses occurred during late spring, summer and early autumn when there was no evidence of light saturation. 5. Rates of ER were high when compared with analogous streams, ranging from 0.4 to 32 g O2 m?2 day?1. ER was highest in autumn 2001, when organic matter accumulations on the streambed were extremely high. By contrast, the higher discharge in autumn 2002 prevented these accumulations and caused lower ER. The Mediterranean climate, and in its effect the hydrological regime, were mainly responsible for the temporal variation in benthic organic matter, and consequently of ER.  相似文献   

11.
The global proliferation of dams is one of the most significant anthropogenic impacts on the environment, resulting in the trapping of massive loads of sediment and nutrients in impoundments. Few studies, however, have examined these impounded sediments to understand patterns of organic carbon (OC) accumulation and the effects of watershed processes on carbon delivery. This study measured total organic carbon (TOC) and stable isotopes of carbon and nitrogen (δ13C and δ15N) in Englebright Lake, CA to relate changes in OC sources and TOC accumulation to natural and anthropogenic events in the watershed and to depositional processes in the lake. Englebright Lake is a representative system for impoundments in small, mountainous rivers, and anthropogenic disturbances in the watershed caused high sediment accumulation rates in the lake. Throughout its 60-year history, 0.35 Tg OC has been trapped behind Englebright Dam and δ13C signatures indicate that more than 50% of the OC in Englebright Lake was derived from terrigenous sources. TOC content ranged from 0.03 to 30.24% of dry weight, and differed across depositional regimes; TOC content in topset deposits (0.35 ± 0.58%) was less than in foreset (2.64 ± 5.95%) and bottomset (1.51 ± 1.41%) deposits (p < 0.001) and TOC accumulation associated with flood events was higher (up to 231 kgOC m?2 year?1) than during non-event periods (0.2 to 39 kgOC m?2 year?1). TOC accumulation rates in Englebright Lake were up to an order of magnitude higher than previous estimates of OC burial in California impoundments. As the number and size of dams continues to expand worldwide, the storage of TOC in impoundments will likely add to the growing number of anthropogenic modifications to the global carbon cycle.  相似文献   

12.
Gross primary productivity (GPP) of phytoplankton and planktonic respiration (PR) (i.e., planktonic metabolism) are critical pathways for carbon transformation in many aquatic ecosystems. In inland floodplain wetlands with variable inundation regimes, quantitative measurements of GPP and PR are rare and their relationships with wetland environmental conditions are largely unknown. We measured PR and the GPP of phytoplankton using light and dark biological oxygen demand bottles in open waters of channel and non-channel floodplain habitats of inland floodplain wetlands of southeast Australia that had been inundated by environmental water. Overall, GPP varied from 3.7 to 405.5 mg C m?3 h?1 (mean ± standard error: 89.4 ± 9.2 mg C m?3 h?1, n = 81), PR from 1.5 to 251.6 mg C m?3 h?1 (43.2 ± 5.6 mg C m?3 h?1, n = 81), and GPP/PR from 0.2 to 15.6 (3.0 ± 0.3, n = 81). In terms of wetland environmental conditions, total nitrogen (TN) ranged from 682.0 to 14,700.0 mg m?3 (mean ± standard error: 2,643.0 ± 241.6 mg m?3, n = 81), total phosphorus (TP) from 48.0 to 1,405.0 mg m?3 (316.8 ± 31.4 mg m?3, n = 81), and dissolved organic carbon (DOC) from 1.9 to 46.3 g m?3 (22.0 ± 1.6 g m?3, n = 81). Using ordinary least-squares multiple regression analyses, the rates of GPP and PR, and their ratio (GPP/PR) were modeled as a function of TN, TP, and DOC that had been measured concomitantly. The “best” models predicted GPP and GPP/PR ratio in channel habitats as a function of DOC; and GPP, PR, and GPP/PR in non-channel floodplain habitats as a function of TN and/or TP. The models explained between 46 and 74 % of the variance in channel habitats and between 17 and 87 % of the variance in non-channel floodplain habitats. Net autotrophy (mean GPP/PR 3.0) of planktonic metabolism in our work supports the prevailing view that wetlands are a net sink for carbon dioxide. We propose a nutrient-DOC framework, combined with hydrological and geomorphological delineations, to better predict and understand the planktonic metabolism in inland floodplain wetlands.  相似文献   

13.
Current estimates of CO2 outgassing from Amazonian rivers and streams have considerable uncertainty since they are based on limited-time surveys of pCO2 measurements along the Amazon mainstem and mouths of major tributaries, using conservative estimates of gas exchange velocities. In order to refine basin-scale CO2 efflux estimates from Amazonian rivers, we present a long time (5-year) dataset of direct measurements of CO2 fluxes, gas transfer velocities and pCO2 measurements in seven representative rivers of the lowland Amazon basin fluvial network, six non-tidal (Negro, Solimões, Teles Pires, Cristalino, Araguaia and Javaés) and one tidal river (Caxiuanã), with sizes ranging from 4th to 9th order. Surveys were conducted from January 2006 to December 2010, in a total of 389 campaigns covering all stages of their hydrographs. CO2 fluxes and gas transfer velocities (k) were measured using floating chambers and pCO2 was measured simultaneously by headspace extraction followed by gas chromatography analysis. Results show high CO2 flux rate variability among rivers and hydrograph stages, ranging from ?0.8 to 15.3 μmol CO2 m?2 s?1, with unexpected negative fluxes in clear-water rivers during low waters. Non-tidal rivers showed marked seasonal CO2 flux patterns, with significantly higher exchange during high waters. Seasonality was modulated by pCO2, which was positive and strongly correlated with discharge. In these rivers k was well correlated with wind speed, which allowed the use of wind data to model k. We estimate a release of 360 ± 60 Tg C year?1 from Amazonian rivers and streams within a 1.47 million km2 quadrant in the central lowland Amazon. Extrapolating these values to the basin upstream of Óbidos, results in an outgassing of 0.8 Pg C to the atmosphere each year. Our results are a step forward in achieving more accurate gas emission values for Amazonian rivers and their role in the annual carbon budget of the Amazon basin.  相似文献   

14.
Dissolved total nitrogen (Nt) and total organic carbon (TOC) exports were measured from 30 catchments and regions draining 76 % of the Canadian landscape in order to estimate reactive N and organic C runoff losses to estuaries and the conditions that control them. N exports from the catchments were lower than measured in most of Europe and the United States due to significantly less agricultural activity and atmospheric deposition, especially in northern Canada. We produce statistical models using a number of geographical, climatic, agricultural, and population factors in order to predict N and C losses from the remaining regions. Using measured and extrapolated data, we estimated that the Canadian landscape exports 884 and 18,210 ktons of Nt and OC per year. Area normalized exports ranged from 29.4 kg km?2 for the northern Mackenzie River to 299 kg km?2 for the semi-agricultural Saint John. Area normalized OC exports ranged from 495 kg km?2 in the high Arctic to 7,295 to the wetland dominated Broadback River in northern Quebec. N exports were best predicted by the latitude of the catchment centroid, mean slope, population density, runoff and % of the catchment as agricultural land. The best model for predicting TOC exports needed only slope and runoff. The Nt/OC ratio in the rivers unsurprisingly was highest in the southern portion of the country where anthropogenic activities were concentrated.  相似文献   

15.
16.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   

17.
1. The microbial metabolism of organic matter in rivers has received little study compared with that of small streams. Therefore, we investigated the rate and location of bacterial production in a sixth‐order lowland river (Spree, Germany). To estimate the contribution of various habitats (sediments, epiphyton, and the pelagic zone) to total bacterial production, we quantified the contribution of these habitats to areal production by bacteria. 2. Large areas of the river bottom were characterized by loose and shifting sands of relatively homogenous particle size distribution. Aquatic macrophytes grew on 40% of the river bottom. Leaf areas of 2.8 m2 m?2 river bottom were found in a 6.6 km river stretch. 3. The epiphyton supported a bacterial production of 5–58 ng C cm?2 h?1. Bacterial production in the pelagic zone was 0.9–3.9 μg C L?1 h?1, and abundance was 4.0–7.8 × 109 cells L?1. Bacterial production in the uppermost 2 cm of sediments ranged from 1 to 8 μg C cm?3 h?1, and abundance from 0.84 to 6.7 × 109 cells cm?3. Bacteria were larger and more active in sediments than in the pelagic zone. 4. In spite of relatively low macrophyte abundance, areal production by bacteria in the pelagic zone was only slightly higher than in the epiphyton. Bacterial biomass in the uppermost 2 cm of sediments exceeded pelagic biomass by factors of 6–22, and sedimentary bacterial production was 17–35 times higher than in the overlying water column. 5. On a square meter basis, total bacterial production in the Spree was clearly higher than primary productivity. Thus, the lowland river Spree is a heterotrophic system with benthic processes dominating. Therefore, sedimentary and epiphytic bacterial productivity form important components of ecosystem carbon metabolism in rivers and shallow lakes. 6. The sediments are focal sites of microbial degradation of organic carbon in a sand‐bottomed lowland river. The presence of a lowland river section within a river continuum probably greatly changes the geochemical fluxes within the river network. This implies that current concepts of longitudinal biogeochemical relationships within river systems have to be revised.  相似文献   

18.
Functional indicators are being increasingly used to assess waterway health but their responses to pressure in non-wadeable rivers have not been widely documented or applied in modern survey designs that provide unbiased estimates of extent. This study tests the response of river metabolism and loss in cotton strip tensile strength across a land use pressure gradient in non-wadeable rivers of northern New Zealand, and reports extent estimates for river metabolism and decomposition rates. Following adjustment for probability of selection, ecosystem respiration (ER) and gross primary production (GPP) for the target population of order 5–7 non-wadeable rivers averaged −7.3 and 4.8 g O2 m−2 d−1, respectively, with average P/R < 1 indicating dominance by heterotrophic processes. Ecosystem respiration was <−3.3 g O2 m−2 d−1 for 75% of non-wadeable river length with around 20% of length between −10 and −20 g O2 m−2 d−1. Cumulative distribution functions of cotton strength loss estimates indicated a more-or-less linear relationship with river km reflecting an even spread of decay rates (range in k 0.0007–0.2875 d−1) across non-wadeable rivers regionally. A non-linear relationship with land cover was detected for GPP which was typically <5 g O2 m−2 d−1 where natural vegetation cover was below 20% and greater than 80% of upstream catchment area. For cotton strength loss, the relationship with land cover was wedge-shaped such that sites with >60% natural cover had low decay rates (<0.02 d−1) with variability below this increasing as natural cover declined. Using published criteria for assessing waterway health based on ER and GPP, 232–298 km (20–29%) of non-wadeable river length was considered to have severely impaired ecosystem functioning, and 436–530 km (42–50%) had no evidence of impact on river metabolism.  相似文献   

19.
Production and accumulation of nitrous oxide (N2O), a major greenhouse gas, in shallow groundwater might contribute to indirect N2O emissions to the atmosphere (e.g., when groundwater flows into a stream or a river). The Intergovernmental Panel on Climate Change (IPCC) has attributed an emission factor (EF5g) for N2O, associated with nitrate leaching in groundwater and drainage ditches—0.0025 (corresponding to 0.25% of N leached which is emitted as N2O)—although this is the subject of considerable uncertainty. We investigated and quantified the transport and fate of nitrate (NO3 ?) and dissolved nitrous oxide from crop fields to groundwater and surface water over a 2-year period (monitoring from April 2008 to April 2010) in a transect from a plateau to the river with three piezometers. In groundwater, nitrate concentrations ranged from 1.0 to 22.7 mg NO3 ?–N l?1 (from 2.8 to 37.5 mg NO3 ?–N l?1 in the river) and dissolved N2O from 0.2 to 101.0 μg N2O–N l?1 (and from 0.2 to 2.9 μg N2O–N l?1 in the river). From these measurements, we estimated an emission factor of EF5g = 0.0026 (similar to the value currently used by the IPCC) and an annual indirect N2O flux from groundwater of 0.035 kg N2O–N ha?1 year?1, i.e., 1.8% of the previously measured direct N2O flux from agricultural soils.  相似文献   

20.
We used various approaches to establish a comprehensive budget of methane (CH4) emissions from the Seine basin, including direct emissions from livestock and soils as well as emissions from the drainage network. For the direct emissions from livestock, we used official livestock census numbers and emission factors (CH4 emitted by each animal species per head per year) available in the literature. For the emissions from soils, we based our estimates on experimental measurements in closed chambers installed on different agricultural plots, forest, and grasslands in 2008 and 2009. The results were extrapolated to the whole Seine basin, including grassland, cropland, and forest soil distributions in the Seine basin. The CH4 emissions from the Seine drainage network were also based on measurements of sampled waters in various rivers and streams (from headwaters to estuary) during different seasons in 2007, 2008, and 2010. After chemical analysis of CH4 concentrations in the water samples using a gas chromatographic technique and calculation of the CH4 supersaturation by stream order in rivers of the Seine basin (from 1 to 8) and by season we could estimate the CH4 emissions for the whole water surface area of the Seine drainage network. The livestock of the Seine basin produce CH4 emissions amounting to 166 × 106 kg C year?1, among which cattle are responsible for 85 %. The total CH4 emission from the Seine drainage network was estimated at 0.3 × 106 kg C year?1, large rivers being responsible for the largest proportion. Ebullition could account for an additional 0.2 × 106 kg C year?1. Soils of the Seine basin are a net sink for CH4 (9.4 × 106 kg C year?1). The water and soils fluxes are low with regard to emissions by livestock, but domestic waste, through landfills, could contribute an additional 40 × 106 kg C year?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号