首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n?=?0–5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential Edye*(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies.
Graphical Abstract Several organic dyes TPA-n with different donors and acceptors are modeled. A strong conjugation acrros the donor and anchoring groips (TPA-n) bas been studied. Candidate TPA-3 shows a promising results.
  相似文献   

2.
A perfectly planar Al13+ cluster (CI) and a quasi-planar Al13+ cluster (CII) have been found for the first time. Both clusters have a triangular core surrounded by a set of ten Al atoms in the form of a ring. These cationic clusters have substantial aromatic character. The planar CI cluster has local antiaromatic patches within global aromatic sea. It is doubly aromatic having both σ and π aromatic character. The quasi-planar CII cluster is also aromatic but it has more σ-delocalization.
Graphical abstract Planar and quasi-planar Al13+ clusters with triangular core surrounded by a ring of ten atoms.
  相似文献   

3.
High-level ab initio calculations on the complexes between noble gas atoms (He, Ne, Ar, Kr, and Xe) and dihalogen molecules (F2, Cl2, Br2, and I2) reveal trends, both in interaction energies and the energy difference between the linear and T-shaped structures, that can be explained well in terms of dispersion interactions enhanced by polar flattening of the halogens. The partial discrepancies with experimental findings are discussed.
Graphical abstract The molecular electrostatic potential (red positive, blue negative) of Cl2...Br2 projected onto the 0.003 a.u. isodensity surface.
  相似文献   

4.
A topological analysis based on density functional electronic and spin densities of the bonding characteristics in a series of Fe, Ru, Os, Tc and Rh dimers and trimers bridged, respectively, by μ-1,8-naphthyridine (nap) and μ-2,2′-dipyridylamine (dpa) is presented. By this simple qualitative analysis, we were able to determine the electronic ground state and correlated bonding order for a number of complexes potentially involved in extended metal atom chains (EMAC). Furthermore, we showed in the Ru dimer that it was possible to control the spin state simply by changing the bonded counter-anion.
Graphical Abstract Electron localization analysis of the bonding properties in [M2(nap)4Cl2]2+ and [M3(dpa)4(Cl2] complexes
  相似文献   

5.
MP2/aug-cc-pVTZ calculations were performed for complexes linked by hydrogen bonds. Three types of proton donating species were taken into account: H2O, CCl3H, and H3O+. These calculations are supported by the natural bond orbital (NBO) method and the quantum theory of atoms in molecules (QTAIM) approach. Numerous correlations between parameters of H-bonded systems were found. The most important are those which show the response of the system on the H-bond formation; for example, the increase of polarization of the A-H bond correlates with the strength of the hydrogen bond. Similar relationships were found for the σ-hole bonds while the π-hole bonds do not follow the trends known for the hydrogen bonds.
Graphical abstract Hydrogen bonds and other interactions as a response to protect doublet/octet electron structure?
  相似文献   

6.
For the first time, the structures, stabilities and electronic properties of alkaline-earth metal doped B44 fullerenes were investigated by means of density functional theory calculations. Our results reveal that M@B44 (M = Ca, Sr, Ba) possess endohedral configurations as their lowest energy structures, whereas the exohedral form is favored when metal is Be or Mg. The large binding energies and sizable HOMO–LUMO gap energies of Ca@B44, Sr@B44 and Ba@B44 suggest the considerable possibility to achieve these novel endohedral borofullerenes experimentally. Born-Oppenheimer molecular dynamics (BO-MD) simulations at various temperatures further confirmed the extreme dynamic stabilities of these endohedral complexes. Their bonding patterns were also analyzed in detail. Finally, we simulated their infrared absorption spectra and 11B nuclear magnetic resonance spectra to help future structural characterization.
Graphical Abstract Stuffing B44 fullerene with metals
  相似文献   

7.
Magnetic shielding constants for an isolated fullerene C60, cucurbituril CB[9], and the host-guest complex C60@CB[9] were calculated as a function of separation of the monomers. Our results in the gas phase and water indicate a significant variation of the magnetic properties for all atoms of the monomers in the complex and after liberation of fullerene C60 from the interior of the CB[9] cavity. The interaction between the two monomers results in a charge transfer that collaborates with a redistribution of electron density to deshield the monomers.
Graphical Abstract NMR spectroscopy alteration on C60@CB[9] host-guest mutual interactions?
  相似文献   

8.
A dispersion correction is introduced and tested for MNDO. The shift in electron density caused by the interaction between oscillating dipoles in the London picture of dispersion is mimicked by adding a small r?7-dependent attractive nucleus–electron potential to the core Hamiltonian. This potential results in a shift in electron density similar to that used by Feynman to explain dispersion. The resulting parameterized self-consistent and inherently multicenter treatment (MNDO-F) gives good results for CHNO compounds that do not exhibit hydrogen bonds, which MNDO cannot reproduce. This “Feynman” dispersion correction is also applicable to Hartree–Fock and density functional theory.
Graphical abstract The MNDO-F optimized geometry for a C60-fullerene tetramer in a tetrahedral configuration.
  相似文献   

9.
The ternary complexes ML???PyZX2???NH3 (ML?=?CuCl, CuCN, AgCN, and AuCN; Z?=?P, As, and Sb; X?=?H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML???PySbH2???NH3, ML???PyAsF2???NH3, and ML???PySbF2???NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.
Graphical Abstract The pnicogen bond is strengthened by the coordinaiton bond
  相似文献   

10.
In order to elucidate why the inclusion of a nonpolar desensitizing agent in polymer-bonded explosives (PBXs) affects their sensitivity and safety, the intermolecular interactions between nitroguanidine (NQ: a high-energy-density compound used as a propellant and in explosive charges) and F2C=CF2 were investigated theoretically at the B3LYP/6–311++G(2df,2p) and M06-2X/6–311++G(2df,2p) levels of theory, focusing especially on the influence of intermolecular interactions on the strength of the trigger bond in NQ. The binding energies and mechanical properties of various β-NQ/polytetrafluoroethylene PBXs were also studied via molecular dynamics simulation. The results indicated that the weak intermolecular interactions between NQ and F2C=CF2 have almost no effect on the strength of the trigger bond or the energy barrier to the intramolecular hydrogen-transfer isomerization of NQ, as also confirmed by an AIM (atoms in molecules) analysis. However, the mechanical properties of the β-NQ/polytetrafluoroethylene PBXs were found to be significantly different from those of pure β-NQ: the PBXs showed reduced rigidity and brittleness, greater elasticity and plasticity, and—in particular—better ductility. Thus, β-NQ-based PBXs with polytetrafluoroethylene are predicted to be less sensitive to external mechanical stimuli, leading to reduced explosive sensitivity and increased safety.
Only mechanical properties influence the safety of nitroguanidine-based PBXs
  相似文献   

11.
Relativistic density functional theory finds that two isomers of a diuranium(III) complex of a polypyrrolic macrocycle (H4L) feature active sites on uranium moieties, allowing for their potential application in activating industrially and economically important small molecules. To address this, a series of adducts [(X)nU2(L)](2–m)+ (X?=?THF, I? and HI; n?=?1 and 2; m?=?0, 1 and 2) have been examined. The coordination from X to the exposed uranium(s) changes the general geometry and electronic structure slightly. Thermodynamic calculations reveal that iodine termination is energetically favored over THF/HI coordination.
Graphical abstract Scalar and spin-orbit coupling relativistic DFT calculation reveals that the active sites on the uranium moieties of [U2(L)]2+ lead to formation of adducts [(THF)nU2(L)]2+, [InU2(L)](2–n)+ and [(HI)nU2(L)]2+ (n?=?1 and 2). Coordination to the exposed uranium(s) changes geometrical and electronic properties slightly, but iodine termination is the most energetically favored.
  相似文献   

12.
Recently, a series of xanthone analogues has been identified as α-glucosidase inhibitors. To provide deeper insight into the three-dimensional (3D) structural requirements for the activities of these molecules, CoMFA and CoMSIA approaches were employed on 54 xanthones to construct 3D-QSAR models. Their bioactive conformations were first investigated by docking studies and optimized by subsequent molecular dynamics (MD) simulations using the homology modeled structure of the target protein. Based on the docking/MD-determined conformers, 3D-QSAR studies generated several significant models in terms of 47 molecules as the training set. The best model (CoMSIA-SHA) yielded q 2 of 0.713, r 2 of 0.967 and F of 140.250. The robustness of the model was further externally confirmed by a test set of the remaining molecules (q 2 = 0.793, r 2 = 0.902, and k = 0.905). Contour maps provided much information for future design and optimization of new compounds with high inhibitory activities towards α-glucosidase.
Graphical Abstract CoMSIA/SHA contour map of xanthone α-glucosidase inhibitor
  相似文献   

13.
Protonation in the two-electron/two-proton reduction processes of 2,6-dichlorophenolindophenolate (DCIP) is investigated combining density functional theory (DFT) and molecular dynamics (MD) methods. DCIP (anion), DCIP?– (radical anion), and DCIP2? (dianion) are considered, including the electronic structure analysis from the prospective of quantum theory of atoms and molecules (QTAIM). It is shown that oxygen on the indophenolate moiety and nitrogen are the first and/or the second proton acceptor sites and their energetic order depends on the total charge of the system. MD simulations of differently charged species interacting with the solvent molecules have been performed for methanol, water, and oxonium cation (H3O+). Methanol and water molecules are found to form only hydrogen bonds with the solute irrespective of its charge. The calculated pKa values show that the imino group of DCIPH? is a weaker acid than water. While in the case of DCIP (and DCIP?–) plus oxonium cation, proton transfer from the solvent to the solute was evidenced for both aforementioned acceptor sites. In addition, MD simulations of bulks containing 15 and 43 molecules of water around the DCIP molecule have been performed, revealing the formation of 2–4 hydrogen bonds.
Graphical Abstract 2,6-Dichlorophenolindophenolate interacts with solvent molecules (water, oxonium cation and methanol). Hydrogen transfer and electronic structure are studied by DFT and molecular dynamics methods
  相似文献   

14.
The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO?→?LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO?→?LUMO?+?1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl- and a cation in its S1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak.
Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.
  相似文献   

15.
Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C6(CH3)62+, in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C7H7)3+, in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C8H8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage.
Graphical abstract Possible structural transformations of stable configurations of (C7H7)3+, which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.
  相似文献   

16.
Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S?=?6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe2+ sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands.
Graphical abstract Effect of d(z2) orbital occupancy on central Fe(II) on spin orientations on termianal Fe(II) ions in extended metal atom chain
  相似文献   

17.
Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X?=?B, Al; Y?=?N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities.
Graphical abstract Possible applications of doped C24 fullerene
  相似文献   

18.
This paper inquires the C60 capabilities to contain radio-iodide (131I2) molecules. The encapsulation conditions are investigated applying first principles method to simulate with geometric optimizations and molecular dynamics at 310 K and atmospheric pressure. We find that the n131I2@C60 system, where n?=?1, 2, 3…, is stable if the content does not exceed three molecules of radio-iodide. The application of density functional theory allows us to determine that, the nanocapsules content limit is related with the amount of charge that is transferred from the iodine 131I2 molecules to the carbon atoms in the fullerene surface. The Mulliken population analysis reveals that the excess of charge increases the repulsive forces between atoms and the bond length average in the C60 structure. The weakened bonds easily break and will critically damage the encapsulation properties. Additionally, we test the interaction nanocapsules with different amounts of radioactive iodine diatomic molecules content with calcium atoms, and find that only the fullerene containing one radioactive iodine diatomic molecule was able to interact with up to nine atoms of calcium without disrupting or cracking. Other fullerenes with two and three radio iodine diatomic molecules cannot resist the interaction with a single calcium atom without cracking or being broken.
Graphical Abstract Instability of 3131I2@C60 Ca.
  相似文献   

19.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
Graphical abstract The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated
  相似文献   

20.
In an effort to replace the widely used ruthenium metal complexes with low-cost, earth abundant iron complexes as photosensitizers for dye-sensitized solar cell (DSSC) applications, herein we report the computational design of heteroleptic iron complexes (FC1–3) coordinated with benzimidazole-phenylcarbene (C^N) ligands. DFT and TDDFT calculations predicted the stronger σ-donating and π-accepting nature of phenyl carbene ligands substituted with electron-withdrawing CF3, donating –N(CH3)2, and benzothiazine annulation than the imidazole carbene ligands (FC4); consequently, the metal-ligand bond distances and interactions that influence the ordering of charge transfer states with respect to metal centered states are altered in FC1–3 complexes. Detailed analysis based on energy decomposition analysis, spin density distribution analysis, and ab initio ligand field theory parameters were enabled to understand the nature of heteroleptic ligand interactions with the rest of the metal complex. The results from the study shed light on the judicious choice of ligands, as the same non-innocent ligand that is experimentally proven as favorable for Ru-dyes (TC1) is found to be detrimental for Fe-dyes (FC1). Among the complexes studied, the FC3 complex is a promising sensitizer for DSSC with 1,3MLCT energy level well separated from 3,5MC, thereby preventing the deactivation of MLCT. The outcome of the study is therefore an important step toward the development of photosensitizers based on iron metal.
Graphical abstract Potential photosensitzers based on earth-abundant, low cost iron metal have been designed for dye sensitized solar cell applications.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号