首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearly 30 synthetic nucleosides were tested with human recombinant poly(ADP-ribose) polymerase 1 as potential inhibitors of this enzyme. The most active compounds were some disaccharide analogues of thymidine: 3′-O-β-D-ribofuranosyl-5-iodo-dUrd (2d; IC50 = 45 μM), 3′-O-β-D-ribofuranosyl-2′-deoxythymidine (2e; IC50 = 38 μM), and 3′-O-β-D-ribofuranosyl-2′-deoxythymidine oxidized (4; IC50 = 25 μM). These compounds also reduced H2O2-induced synthesis of poly(ADP-ribose) in cultured human ovarian carcinoma (SKOV-3) cells in a dose-dependent manner. Furthermore, compounds 2d or 2e until a concentration of 1 mM did not affect growth of SKOV-3 cells, whereas dialdehyde compound 4, as well as thymidine, exhibited a significant cytotoxicity.  相似文献   

2.
The M2 isoform of pyruvate kinase (PKM2) is a potential antitumor therapeutic target. In this study, we designed and synthesised a series of 2, 3-didithiocarbamate substituted naphthoquinones as PKM2 inhibitors based on the lead compound 3k that we previously reported. Among them, compound 3f (IC50?=?1.05?±?0.17 µM) and 3h (IC50?=?0.96?±?0.18 µM) exhibited potent inhibition of PKM2, and their inhibitory activities are superior to compound 3k (IC50?=?2.95?±?0.53 µM) and the known PKM2 inhibitor shikonin (IC50?=?8.82?±?2.62 µM). In addition, we evaluated in vitro antiproliferative effects of target compounds using MTS assay. Most target compounds exhibited dose-dependent cytotoxicity with IC50 values in nanomolar concentrations against HCT116, MCF7, Hela, H1299 and B16 cells. These small molecule PKM2 inhibitors not only provide candidate compounds for cancer therapy, but also offer a tool to probe the biological effects of PKM2 inhibition on cancer cells.  相似文献   

3.
As our continuing research, a series of 2-aryl-8-OR-3,4-dihydroisoquinolin-2-ium bromides were evaluated for cytotoxic activity on cancer cells and apoptosis induction in the present study. SAR was derived also. Among them, 23 compounds showed the higher cytotoxicity on MKN-45 cells with IC50 values of 1.99–11.3 μM than a standard anticancer drug cis-platinum (IC50 = 11.4 μM) or their natural model compound chelerythrine (IC50 = 12.7 μM); 16 compounds possessed the medium to high activity on NB4 cells with IC50 values of 1.67–4.62 μM. SAR analysis showed that both substitution patterns of the N-aromatic ring and the type of 8-OR significantly impact the activity. AO/EB staining and flow cytometry analysis with Annexin V/PI double staining showed that the compounds were able to induce apoptosis in a concentration-dependent manner. The results above suggested that the title compounds are a class of promising compounds for the development of new anti-cancer drugs.  相似文献   

4.
12 novel scopoletin-isoxazole and scopoletin-pyrazole hybrids were designed, synthesized and their chemical structures were confirmed by HR-MS, IR, 1H NMR and 13C NMR spectra. The anticancer activities of the newly synthesized compounds were evaluated in vitro against three human cancer cell lines including HCT-116, Hun7 and SW620 by MTT assay. The screening results showed that six compounds (9a, 9c, 9d, 12a, 18b and 18d) exhibited potent cytotoxic activities with IC50 values below 20 μM. Besides, we have further evaluated the growth inhibitory activities of six compounds against the human normal tissue cell lines HFL-1. Especially, compound 9d displayed significant anti-proliferative activity with IC50 values ranging from 8.76 μM to 9.83 μM and weak cytotoxicity with IC50 value of 90.9 μM on normal cells HFL-1, which suggested that isoxazole-based hybrids of scopoletin were an effective chemical modification to improve the anticancer activity of scopoletin.  相似文献   

5.
With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer’s disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer’s disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67–169.80 nM (donepezil IC50 50.12 nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50 μM (sildenafil IC50 12.59 μM), and some of these compounds showed low cell toxicity to A549 cells in vitro.  相似文献   

6.
Two series of xanthotoxin-triazole derivatives were designed, synthesized, and studied for their antiproliferative properties. The in vitro cytotoxicity of the compounds in the AGS cancer cell line and the L02 normal cell line was evaluated via MTT assay. Among the synthesized compounds, 9-((1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methoxy)-7H-furo[3,2-g]chromen-7-one (6p) was found to have the greatest antiproliferative activity against AGS cells (IC50 = 7.5 μM) and showed better activity than the lead compound (xanthotoxin, IC50 > 100 μM) and the reference drug (5-fluorouracil, IC50 = 29.6 μM) did. The IC50 value of 6p in L02 cells was 13.3 times higher than that in the AGS cells. Therefore, the compound exhibited better therapeutic activity and specificity compared with the positive control 5-fluorouracil. Cell cycle analysis revealed that compound 6p inhibited cell growth via the induction of S/G2 phase arrest in AGS cells. Compound 6p was identified as a promising lead compound for the further development and identification of 1,2,3-triazole-based anticancer agents.  相似文献   

7.
In an endeavor to develop efficacious antiprotozoal agents 4-(7-chloroquinolin-4-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone derivatives (514) were synthesized, characterized and biologically evaluated for antiprotozoal activity. The compounds were screened in vitro against the HM1: IMSS strain of Entamoeba histolytica and NF54 chloroquine-sensitive strain of Plasmodium falciparum. Among the synthesized compounds six exhibited promising antiamoebic activity with IC50 values (0.14–1.26 μM) lower than the standard drug metronidazole (IC50 1.80 μM). All nine compounds exhibited antimalarial activity (IC50 range: 1.42–19.62 μM), while maintaining a favorable safety profile to host red blood cells. All the compounds were less effective as an antimalarial and more toxic (IC50 range: 14.67–81.24 μM) than quinine (IC50: 275.6 ± 16.46 μM) against the human kidney epithelial cells. None of the compounds exhibited any inhibitory effect on the viability of Anopheles arabiensis mosquito larvae.  相似文献   

8.
The Mycobacterium tuberculosis protein kinase B (PknB) is critical for growth and survival of M. tuberculosis within the host. The series of aminopyrimidine derivatives show impressive activity against PknB (IC50 < .5 μM). However, most of them show weak or no cellular activity against M. tuberculosis (MIC > 63 μM). Consequently, the key structural features related to activity against of both PknB and M. tuberculosis need to be investigated. Here, two- and three-dimensional quantitative structure–activity relationship (2D and 3D QSAR) analyses combined with molecular dynamics (MD) simulations were employed with the aim to evaluate these key structural features of aminopyrimidine derivatives. Hologram quantitative structure–activity relationship (HQSAR) and CoMSIA models constructed from IC50 and MIC values of aminopyrimidine compounds could establish the structural requirements for better activity against of both PknB and M. tuberculosis. The NH linker and the R1 substituent of the template compound are not only crucial for the biological activity against PknB but also for the biological activity against M. tuberculosis. Moreover, the results obtained from MD simulations show that these moieties are the key fragments for binding of aminopyrimidine compounds in PknB. The combination of QSAR analysis and MD simulations helps us to provide a structural concept that could guide future design of PknB inhibitors with improved potency against both the purified enzyme and whole M. tuberculosis cells.  相似文献   

9.
Fibroblast growth factor receptor 1 (FGFR1) plays an important role in tumorigenesis and is therefore an attractive target for anticancer therapy. Using molecular docking approach we have identified inhibitor of FGFR1 belonging to 5-amino-4-(1H-benzoimidazol-2-yl)-phenyl-1,2-dihydro-pyrrol-3-ones with IC50 value of 3.5 μM. A series of derivatives of this chemical scaffold has been synthesized and evaluated for inhibition of FGFR1 kinase activity. It was revealed that the most promising compounds 5-amino-1-(3-hydroxy-phenyl)-4-(6-methyl-1H-benzoimidazol-2-yl)-1,2-dihydro-pyrrol-3-one and 5-amino-4-(1H-benzoimidazol-2-yl)-1-(3-hydroxy-phenyl)-1,2-dihydro-pyrrol-3-one inhibit FGFR1 with IC50 values of 0.63 and 0.32 μM, respectively, and posses antiproliferative activity against KG1 myeloma cell line with IC50 values of 5.6 and 9.3 μM. Structure–activity relationships have been studied and binding mode of this chemical class has been proposed.  相似文献   

10.
Both histone deacetylase (HDAC) and fibroblast growth factor receptor (FGFR) are important targets for cancer therapy. Although combining dual HDAC pharmacophore with tyrosine kinase inhibitors (TKIs) had achieved a successful progress, dual HDAC/FGFR1 inhibitors haven’t been reported yet. Herein, we designed a series of hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids scaffold with scaffold hopping and molecular hybridization strategies. Among them, compound 7j showed the most potent inhibitory activity against HDAC6 with IC50 of 34?nM and exhibited the great inhibitory activities against a human breast cancer cell line MCF-7 with IC50 of 9?μM in vitro. Meanwhile, the compound also exhibited moderate FGFR1 inhibitory activities. This study provides new tool compounds for further exploration of dual HDAC/FGFR1 inhibition.  相似文献   

11.
Two new pyranoflavonoids, morustralins A (1) and B (2), a new natural benzene derivative, one benzenoid (Z)-1-hydroxy-4-(2-nitroethenyl)benzene (3), and thirty known compounds were isolated and characterized from the root bark of Morus australis. The structures of the new compounds were established from spectroscopic and spectrometric analyses. Ten isolates (110) were examined for inhibitory effects on adenosine diphosphate (ADP)-, arachidonic acid (AA)-, and platelet-aggregating factor (PAF)-induced platelet aggregation. Among the tested compounds, compound 3 displayed the most significant inhibition of ADP- and AA-induced platelet aggregation with IC50 values of 9.76 ± 5.54 and 9.81 ± 2.7 μM, respectively. In addition, eight purified compounds (310) were examined for inhibition of nitric oxide (NO) production in RAW 264.7 cells and six compounds (38) displayed significant inhibitory effects with IC50 values ranging from 2.1 ± 0.3 to 6.3 ± 0.6 μM.  相似文献   

12.
4-Anilinoquinazoline derivatives function as tyrosine kinase inhibitors (TKIs). Novel TKIs are needed for cancer mutations and drug-resistant cells. We designed and synthesized 4-anilinoquinazoline derivatives with substitutions at quinazoline positions 6, 7 and 4 using a binding model with multi-target receptor tyrosine kinases, and assessed their antitumor activity against five human tumor cell lines (HepG2, A549, MCF-7, DU145, SH-SY5Y). The majority of the compounds inhibited the proliferation of all the cancer cell types, with some compounds displaying selective inhibition. Compounds 21, 25, 27, and 37 displayed IC50 values of 7.588, 8.619, 6.936, and 8.516 μM, respectively, for A549 cells, which were much lower than that of Gefitinib (14.803 μM). Compound 32 displayed an IC50 value of 2.756 μM for DU145 cells. The representative compound 40 had unexceptionable broad-spectrum inhibition for all cancer cell types, and demonstrate inhibition of vascular endothelial growth factor receptor 2 (VEGFR-2), platelet-derived growth factor receptor beta (PDGFR-β), and epidermal growth factor receptor (EGFR) with IC50 values of 46.4, 673.6 and 384.8 nM, respectively, which were similar to those of Sorafenib for VEGFR-2 and PDGFR-β (140.6 and 582.7 nM, respectively). Molecular docking results supported the molecular level assay results. Data for production of reactive oxygen species and assessment of matrix metalloproteinase corroborated the strong anti-proliferative effect of compound 40. The compound also displayed robust antitumor efficacy and relativity lower toxicity in a xenograft model. These attributes were similar to those of Sorafenib. Compound 40 drug warrants further study as a candidate.  相似文献   

13.
A new small library of 2-aminobenzoyl amino acid hydrazide derivatives and quinazolinones derivatives was synthesized and fully characterized by IR, NMR, and elemental analysis. The activity of the prepared compounds on the growth of Leishmania aethiopica promastigotes was evaluated. 2-Benzoyl amino acid hydrazide showed higher inhibitory effect than the quinazoline counterpart. The in vitro antipromastigote activity demonstrated that compounds 2a, 2b, 2f and 4a had IC50 better than standard drug miltefosine and comparable activity to amphotericin B deoxycholate, which indicates their high antileishmanial activity against Leishmania. aethiopica. Among the prepared compounds; 2-amino-N-(6-hydrazinyl-6-oxohexyl)benzamide 2f (IC50 = 0.051 μM) has the best activity, 154 folds more active than reference standard drug miltefosine (IC50 = 7.832 μM), and half fold the activity of amphotericin B (IC50 = 0.035 μM). In addition, this compound was safe and well tolerated by experimental animals orally up to 250 mg/kg and parenterally up to 100 mg/kg.  相似文献   

14.
Survival of entomopathogenic fungi under solar ultraviolet (UV) radiation is paramount to the success of biological control of insect pests and disease vectors. The mutagenic compound 4-nitroquinoline 1-oxide (4-NQO) is often used to mimic the biological effects of UV radiation on organisms. Therefore, we asked whether tolerance to 4-NQO could predict tolerance to UV radiation in thirty isolates of entomopathogenic fungi and one isolate of a xerophilic fungus. A dendrogram obtained from cluster analyses based on the 50 and 90 % inhibitory concentrations (IC50 and IC90, respectively) divided the fungal isolates into six clusters numbered consecutively based on their tolerance to 4-NQO. Cluster 6 contained species with highest tolerance to 4-NQO (IC50 > 4.7 μM), including Mariannaea pruinosa, Lecanicillium aphanocladii, and Torrubiella homopterorum. Cluster 1 contained species least tolerant to 4-NQO (IC50 < 0.2 μM), such as Metarhizium acridum (ARSEF 324), Tolypocladium geodes, and Metarhizium brunneum (ARSEF 7711). With few exceptions, the majority of Metarhizium species showed moderate to low tolerances (IC50 between 0.4 and 0.9 μM) and were placed in cluster 2. Cluster 3 included species with moderate tolerance (IC50 between 1.0 and 1.2 μM). In cluster 4 were species with moderate to high tolerance (IC50 between 1.3 and 1.6 μM). Cluster 5 contained the species with high tolerance (IC50 between 1.9 and 4.0 μM). The most UV tolerant isolate of M. acridum, ARSEF 324, was the least tolerant to 4-NQO. Also, L. aphanocladii, which is very susceptible to UV radiation, showed high tolerance to 4-NQO. Our results indicate that tolerance to 4-NQO does not correlate with tolerance to UV radiation. Therefore this chemical compound is not a predictor of UV tolerance in entomopathogenic fungi.  相似文献   

15.
Histone deacetylase 3 (HDAC3) is a potential target for the treatment of human diseases such as cancers, diabetes, chronic inflammation and neurodegenerative diseases. Previously, we proposed a virtual screening (VS) pipeline named “Hypo1_FRED_SAHA-3” for the discovery of HDAC3 inhibitors (HDAC3Is) and had thoroughly validated it by theoretical calculations. In this study, we attempted to explore its practical utility in a large-scale VS campaign. To this end, we used the VS pipeline to hierarchically screen the Specs chemical library. In order to facilitate compound cherry-picking, we then developed a knowledge-based pose filter (PF) by using our in-house quantitative structure activity relationship- (QSAR-) modelling approach and coupled it with FRED and Autodock Vina. Afterward, we purchased and tested 11 diverse compounds for their HDAC3 inhibitory activity in vitro. The bioassay has identified compound 2 (Specs ID: AN-979/41971160) as a HDAC3I (IC50?=?6.1?μM), which proved the efficacy of our workflow. As a medicinal chemistry study, we performed a follow-up substructure search and identified two more hit compounds of the same chemical type, i.e. 2–1 (AQ-390/42122119, IC50?=?1.3?μM) and 2–2 (AN-329/43450111, IC50?=?12.5?μM). Based on the chemical structures and activities, we have demonstrated the essential role of the capping group in maintaining the activity for this class of HDAC3Is. In addition, we tested the hit compounds for their in vitro activities on other HDACs, including HDAC1, HDAC2, HDAC8, HDAC4 and HDAC6. We have identified these compounds are HDAC1/2/3 selective inhibitors, of which compound 2 show the best selectivity profile. Taken together, the present study is an experimental validation and an update to our earlier VS strategy. The identified hits could be used as starting structures for the development of highly potent and selective HDAC3Is.  相似文献   

16.
Index     
Anticancer role of oxindole compounds is well documented. Here, we synthesized new derivatives of 3-hydroxy-2-oxindole functionalized at position 3 (1a–f) which are expected to have antiproliferative activity in cancer cells. Human prostate cancer cell line (DU145) was treated with the synthesized derivatives at 40-μM concentration for 24, 48, and 72 h. Compounds 1-ethyl-3-hydroxy-1,1′,3,3′-tetrahydro-2H,2′H-3,3′-biindole-2,2′-dione (1d), 5-bromo-1-ethyl-3-hydroxy-1,1′,3,3′-2H,2′H-3,3′-biindole-2,2′-dione (1e), and 5-chloro-1-ethyl-3-hydroxy-1,1′,3,3′-tetrahydro-2H,2′H-3,3′-biindole-2,2′-dione (1f) were found to significantly reduce DU145 cell viability at 48 and 72 h whereas no significant changes were observed up to 24 h. The compounds 1e and 1f showed the most cytotoxicity effect and had a similar antiproliferative activity on DU145 cell line. They have halogen and ethyl substitutions at positions 5 and 1, respectively. The IC50 of compound 1e for DU145 and A375 cells at 48 h was determined. The apoptotic effects and cell cycle progression of compound 1e at 1/2 × IC50 (55 μM) concentration in DU145 cells were investigated by nuclei staining, comet assay, flow cytometry, and scanning electron microscopy (SEM). The results obtained showed that this compound increased the percentage of tail DNA, increased the occurrence of the sub-G1 phase, and induced G2M arrest and apoptosis in DU145 cells after exposure for 48 h to a 55-μM concentration. The SEM images revealed cell contraction at 24 h, cell condensation, plasma membrane blebbing, and formation of apoptotic bodies at 48 and 72 h. These observations suggest that the antiproliferative activity of compound 1e may be to induce apoptosis in DU145 cells.  相似文献   

17.
18.
A new line of human ovarian serous adenocarcinoma cells, TU-OS-4, was established and characterized. The cells showed a short, spindle-shaped morphology and grew in monolayers without contact inhibition while forming an arrangement resembling a jigsaw puzzle. Chromosome numbers ranged from 55 to 73. The proliferation rate was lower than other serous adenocarcinoma cell lines tested (KF, SHIN-3, and SK-OV-3), and the doubling time was 53.3 h. Western blot analysis showed that TU-OS-4 cells overexpressed epidermal growth factor receptor, human epidermal growth factor receptor (HER) 2, and phosphorylated HER2 protein. The IC50 values to cisplatin, paclitaxel, and lapatinib were 25.8 μM, 686 nM, and 183 nM, respectively. Heterotransplantation in nude mice reflected the original tumor of the cells. These results suggested that this cell line would be useful to study chemoresistant mechanisms and contribute to establishing novel treatment strategies for patients with ovarian cancer.  相似文献   

19.
In this study, a series of fluorine‐containing chiral hydrazide‐hydrazone derivatives [III‐XII] from ?‐cysteine ethyl ester hydrochloride was synthesized as new antioxidant and anticholinesterase agents. The antioxidant activity of these derivatives was evaluated by ABTS and DPPH· scavenging and CUPRAC assays and the anticholinesterase activity by the Ellman method spectrophotometrically. The results of the antioxidant assay showed that compounds V , IX , and X exhibited higher activity than BHT and α‐tocopherol used as positive standards. Among the synthesized derivatives, compound IX (IC50: 2.3 ± 1.6 μM) exhibited higher acetylcholinesterase inhibitory activity than galantamine (IC50: 4.5 ± 0.8 μM). Compounds XI (IC50: 9.6 ± 1.0 μM), IX (IC50: 12.5 ± 1.6 μM), III (IC50: 16.0 ± 1.6 μM), X (IC50: 17.2 ± 1.8 μM), VI (IC50: 20.2 ± 0.8 μM), XII (IC50: 21.5 ± 1.0 μM), and VII (IC50: 24.6 ± 0.6 μM) displayed better butyrylcholinesterase inhibitory activity than galantamine (IC50: 46.03 ± 0.14 μM). ADME‐Tox analysis was used to probe the drug‐like properties of the compounds. Molecular docking studies were also applied to understand the interactions between compounds and targets. The docking calculations were supported by the experimental data. In particular, compound IX , having better activity than galantamine against acetylcholinesterase and butyrylcholinesterase enzymes, was visualized using molecular docking.  相似文献   

20.
A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC50 values of 0.6 μM and 0.8 μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号