首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several crystal structures of AFL, a novel lipase from the archaeon Archaeoglobus fulgidus, complexed with various ligands, have been determined at about 1.8 Å resolution. This enzyme has optimal activity in the temperature range of 70-90 °C and pH 10-11. AFL consists of an N-terminal α/β-hydrolase fold domain, a small lid domain, and a C-terminal β-barrel domain. The N-terminal catalytic domain consists of a 6-stranded β-sheet flanked by seven α-helices, four on one side and three on the other side. The C-terminal lipid binding domain consists of a β-sheet of 14 strands and a substrate covering motif on top of the highly hydrophobic substrate binding site. The catalytic triad residues (Ser136, Asp163, and His210) and the residues forming the oxyanion hole (Leu31 and Met137) are in positions similar to those of other lipases. Long-chain lipid is located across the two domains in the AFL-substrate complex. Structural comparison of the catalytic domain of AFL with a homologous lipase from Bacillus subtilis reveals an opposite substrate binding orientation in the two enzymes. AFL has a higher preference toward long-chain substrates whose binding site is provided by a hydrophobic tunnel in the C-terminal domain. The unusually large interacting surface area between the two domains may contribute to thermostability of the enzyme. Two amino acids, Asp61 and Lys101, are identified as hinge residues regulating movement of the lid domain. The hydrogen-bonding pattern associated with these two residues is pH dependent, which may account for the optimal enzyme activity at high pH. Further engineering of this novel lipase with high temperature and alkaline stability will find its use in industrial applications.  相似文献   

2.
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 Å resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C1, C2, and C3. Each domain adopts a DE-variant IgG fold, with two β-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C1 and C2) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C1 and C2 domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C1 and C2 domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.  相似文献   

3.
The MspJI modification-dependent restriction endonuclease recognizes 5-methylcytosine or 5-hydroxymethylcytosine in the context of CNN(G/A) and cleaves both strands at fixed distances (N12/N16) away from the modified cytosine at the 3′-side. We determined the crystal structure of MspJI of Mycobacterium sp. JLS at 2.05-Å resolution. Each protein monomer harbors two domains: an N-terminal DNA-binding domain and a C-terminal endonuclease. The N-terminal domain is structurally similar to that of the eukaryotic SET and RING-associated domain, which is known to bind to a hemi-methylated CpG dinucleotide. Four protein monomers are found in the crystallographic asymmetric unit. Analytical gel-filtration and ultracentrifugation measurements confirm that the protein exists as a tetramer in solution. Two monomers form a back-to-back dimer mediated by their C-terminal endonuclease domains. Two back-to-back dimers interact to generate a tetramer with two double-stranded DNA cleavage modules. Each cleavage module contains two active sites facing each other, enabling double-strand DNA cuts. Biochemical, mutagenesis and structural characterization suggest three different monomers of the tetramer may be involved respectively in binding the modified cytosine, making the first proximal N12 cleavage in the same strand and then the second distal N16 cleavage in the opposite strand. Both cleavage events require binding of at least a second recognition site either in cis or in trans.  相似文献   

4.
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 Å resolution and its C-terminal DNA-binding domain at 1.7 Å resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (βα)4 topology instead of the canonical (βα)5 fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix α10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix α10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.  相似文献   

5.
Abstract

The quaternary structure and dynamics of phage λ repressor are investigated in solution by 1H-NMR methods. λ repressor contains two domains separable by proteolysis: an N-terminal domain that mediates sequence-specific DNA-A binding, and a C-terminal domain that contains strong dimer and higher-order contacts. The active species in operator recognition is a dimer. Although the crystal structure of an N-terminal fragment has been determined, the intact protein has not been crystallized, and there is little evidence concerning its structure. 1H-NMR data indicate that the N-terminal domain is only loosely tethered to the C-terminal domain, and that its tertiary structure is unperturbed by proteolysis of the “linker” polypeptide. It is further shown that in the intact repressor structure a quaternary interaction occurs between N-terminal domains. This domain-domain interaction is similar to the dimer contact observed in the crystal structure of the N-terminal fragment and involves the hydrophobic packing of symmetry-related helices (helix 5). In the intact structure this interaction is disrupted by the single amino-acid substitution, Ile84→Ser, which reduces operator affinity at least 100-fold. We conclude that quaternary interactions between N-terminal domains function to appropriately orient the DNA-binding surface with respect to successive major grooves of B-DNA.  相似文献   

6.
Although AIMP3/p18 is normally associated with the multi-tRNA synthetase complex via its specific interaction with methionyl-tRNA synthetase, it also works as a tumor suppressor by interacting with ATM, the upstream kinase of p53. To understand the molecular interactions of AIMP3 and the mechanisms involved, we determined the crystal structure of AIMP3 at 2.0-angstroms resolution and identified its potential sites of interaction with ATM. AIMP3 contains two distinct domains linked by a 7-amino acid (Lys57-Ser63) peptide, which contains a 3(10) helix. The 56-amino acid N-terminal domain consists of two helices into which three antiparallel beta strands are inserted, and the 111-amino acid C-terminal domain contains a bundle of five helices (Thr64-Tyr152) followed by a coiled region (Pro153-Leu169). Structural analyses revealed homologous proteins such as yeast glutamyl-tRNA synthetase, Arc1p, EF1Bgamma, and glutathione S-transferase and suggested two potential molecular binding sites. Moreover, mutations at the C-terminal putative binding site abolished the interaction between AIMP3 and ATM and the ability of AIMP3 to activate p53. Thus, this work identified the two potential molecular interaction sites of AIMP3 and determined the residues critical for its tumor-suppressive activity through the interaction with ATM.  相似文献   

7.
The human peptidyl prolyl cis/trans isomerase (PPIase) Pin1 has a key role in developmental processes and cell proliferation. Pin1 consists of an N-terminal WW domain and a C-terminal catalytic PPIase domain both targeted specifically to Ser(PO3H2)/Thr(PO3H2)-Pro sequences. Here, we report the enhanced affinity originating from bivalent binding of ligands toward Pin1 compared to monovalent binding. We developed composite peptides where an N-terminal segment represents a catalytic site-directed motif and a C-terminal segment exhibits a predominant affinity to the WW domain of Pin1 tethered by polyproline linkers of different chain length. We used NMR shift perturbation experiments to obtain information on the specific interaction of a bivalent ligand to both targeted sites of Pin1. The bivalent ligands allowed a considerable range of thermodynamic investigations using isothermal titration calorimetry and PPIase activity assays. They expressed up to 350-fold improved affinity toward Pin1 in the nanomolar range in comparison to the monovalent peptides. The distance between the two binding motifs was highly relevant for affinity. The optimum in affinity manifested by a linker length of five prolyl residues between active site- and WW domain-directed peptide fragments suggests that the corresponding domains in Pin1 are allowed to adopt preferred spatial arrangement upon ligand binding.  相似文献   

8.
Folmer RH  Geschwindner S  Xue Y 《Biochemistry》2002,41(48):14176-14184
The protein kinase ZAP-70 is involved in T-cell activation, and interacts with tyrosine-phosphorylated peptide sequences known as immunoreceptor tyrosine activation motifs (ITAMs), which are present in three of the subunits of the T-cell receptor. We have studied the tandem SH2 (tSH2) domains of ZAP-70, by both X-ray and NMR. Here, we present the crystal structure of the apoprotein, i.e., the tSH2 domain in the absence of ITAM. Comparison with the previously reported complex structure reveals that binding to the ITAM peptide induces surprisingly large movements between the two SH2 domains and within the actual binding sites. The conformation of the ITAM-free protein is partly governed by a hydrophobic cluster between the linker region and the C-terminal SH2 domain. Our data suggest that the two SH2 domains are able to undergo large interdomain movements. The proposed relative flexibility of the SH2 domains is further supported by the finding that no NMR signals could be detected for the two helices connecting the SH2 domains; these are likely to be broadened beyond detection due to conformational exchange. It is likely that this conformational reorientation induced by ITAM binding is the main signaling event activating the kinase domain in ZAP-70. Another NMR observation was that the N-terminal SH2 domain could bind tetrapeptides derived from the ITAM sequence, apparently without the need to interact with the C-terminal domain. In contrast, the C-terminal domain has little affinity for tetrapeptides. The opposite situation is true for binding to plain phosphotyrosine, where the C-terminal domain has a higher affinity. Distinct features in the crystal structure, showing the interdependence of both domains, explain these binding data.  相似文献   

9.
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure–function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.  相似文献   

10.
U Baumann  S Wu  K M Flaherty    D B McKay 《The EMBO journal》1993,12(9):3357-3364
The three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa, a zinc metalloprotease, has been solved to a resolution of 1.64 A by multiple isomorphous replacement and non-crystallographic symmetry averaging between different crystal forms. The molecule is elongated with overall dimensions of 90 x 35 x 25 A; it has two distinct structural domains. The N-terminal domain is the proteolytic domain; it has an overall tertiary fold and active site zinc ligation similar to that of astacin, a metalloprotease isolated from a European freshwater crayfish. The C-terminal domain consists of a 21-strand beta sandwich. Within this domain is a novel 'parallel beta roll' structure in which successive beta strands are wound in a right-handed spiral, and in which Ca2+ ions are bound within the turns between strands by a repeated GGXGXD sequence motif, a motif that is found in a diverse group of proteins secreted by Gram-negative bacteria.  相似文献   

11.
Integration of the retrovirus linear DNA genome into the host chromosome is an essential step in the viral replication cycle, and is catalyzed by the viral integrase (IN). Evidence suggests that IN functions as a dimer that cleaves a dinucleotide from the 3′ DNA blunt ends while a dimer of dimers (tetramer) promotes concerted integration of the two processed ends into opposite strands of a target DNA. However, it remains unclear why a dimer rather than a monomer of IN is required for the insertion of each recessed DNA end. To help address this question, we have analyzed crystal structures of the Rous sarcoma virus (RSV) IN mutants complete with all three structural domains as well as its two-domain fragment in a new crystal form at an improved resolution. Combined with earlier structural studies, our results suggest that the RSV IN dimer consists of highly flexible N-terminal domains and a rigid entity formed by the catalytic and C-terminal domains stabilized by the well-conserved catalytic domain dimerization interaction. Biochemical and mutational analyses confirm earlier observations that the catalytic and the C-terminal domains of an RSV IN dimer efficiently integrates one viral DNA end into target DNA. We also show that the asymmetric dimeric interaction between the two C-terminal domains is important for viral DNA binding and subsequent catalysis, including concerted integration. We propose that the asymmetric C-terminal domain dimer serves as a viral DNA binding surface for RSV IN.  相似文献   

12.
李嵘  王喆之 《植物研究》2007,27(1):59-67
采用生物信息学的方法和工具对已在GenBank上注册的拟南芥、玉米、岩蔷薇、水稻、黄花蒿、亚麻等植物的萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的核酸及氨基酸序列进行分析,并对其组成成分、转运肽、跨膜拓朴结构域、疏水性/亲水性、蛋白质二级及三级结构、分子系统进化关系等进行预测和推断。结果表明:该类酶基因的全长包括5′、3′非翻译区和一个开放阅读框,无跨膜结构域,是一个具转运肽的亲水性蛋白,包括两个功能DXR结合motif及两个功能NADPH结合motif,α-螺旋和不规则卷曲是蛋白质二级结构最大量的结构元件,β-转角和β-折叠散布于整个蛋白质中,蛋白质的功能域在空间结构上折叠成“V”形,“V”形的两臂由N-端与C-端构成,“V”形的底部,是N 端臂与C-端臂的结合域。  相似文献   

13.
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates.  相似文献   

14.
15.
GrpE acts as a nucleotide exchange factor for DnaK, the main Hsp70 protein in bacteria, accelerating ADP/ATP exchange by several orders of magnitude. GrpE is a homodimer, each subunit containing three structural domains: a N-terminal unordered segment, two long coils and a C-terminal globular domain formed by a four-helix bundle, and a β-subdomain. GrpE association to DnaK nucleotide-binding domain involves side-chain and backbone interactions located within the “headpiece” of the cochaperone, which consists of the C-terminal half of the coils, the four-helix bundle and the β-subdomain. However, the role of the GrpE N-terminal region in the interaction with DnaK and the activity of the cochaperone remain controversial. In this study we explore the contribution of this domain to the binding reaction, using the wild-type proteins, two deletion mutants of GrpE (GrpE34-197 and GrpE69-197) and the isolated DnaK nucleotide-binding domain. Analysis of the thermodynamic binding parameters obtained by isothermal titration calorimetry shows that both GrpE N-terminal segments, 1-33 and 34-68, contribute to the binding reaction. Partial proteolysis and substrate dissociation kinetics also suggest that the N-terminal half of GrpE coils (residues 34-68) interacts with DnaK interdomain linker, regulates the nucleotide exchange activity of the cochaperone and is required to stabilize DnaK-substrate complexes in the ADP-bound conformation.  相似文献   

16.
Plants use a highly evolved immune system to exhibit defense response against microbial infections. The plant TIR domain, together with the nucleotide‐binding (NB) domain and/or a LRR region, forms a type of molecule, named resistance (R) proteins, that interact with microbial effector proteins and elicit hypersensitive responses against infection. Here, we report the first crystal structure of a plant TIR domain from Arabidopsis thaliana (AtTIR) solved at a resolution of 2.0 Å. The structure consists of five β‐strands forming a parallel β‐sheet at the core of the protein. The β‐strands are connected by a series of α‐helices and the overall fold mimics closely that of other mammalian and bacterial TIR domains. However, the region of the αD‐helix reveals significant differences when compared with other TIR structures, especially the αD3‐helix that corresponds to an insertion only present in plant TIR domains. Available mutagenesis data suggest that several conserved and exposed residues in this region are involved in the plant TIR signaling function.  相似文献   

17.
The crystal structure of pig heart citrate synthase was analyzed at 0.35-nm resolution. Chain tracing was possible and an initial molecular model constructed. The dimensions of the dimer molecule (located on a crystallographic diad) are 7.5 x 6.0 x 9.0 nm. The chain folding is characterized by the predominance of helices and the absence of sheet structure. The electron density accounts for 355 residues per monomer, so that about 80 residues must be disordered in the crystal. The disordered segment in probably N-terminal. The ordered part consists of two closely associated domains, a large domain with 300 residues and a C-terminal domain of 55 residues consisting of 3(anti)parallel helices. The large domain is built from 12 helical segments, some of which are buried in the interior of the molecule. Inhibitor binding studies with citrate and CoA revealed citrate binding sites but showed no electron density for CoA. It is suggested that CoA binds to the disordered, flexible N-terminal domain. Experiments of limited proteolysis with trypsin showed that under conditions a segment of Mr 9000 is cleaved off selectively. The remaining 35 000-Mr part is dimeric.  相似文献   

18.
Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker binding activity with the W-box compared to the C-terminal domain. The DNA-binding activity of the WRKY domain was abolished by o-phenanthroline and this inhibition was recovered specifically by Zn2+. Substitution of the conserved cysteine and histidine residues of the plant-specific C2H2-type zinc finger-like motif in the WRKY domain abolished the DNA binding. In addition, mutations in the invariable WRKYGQK sequence at the N-terminal side of the zinc finger-like motif also significantly reduced the DNA-binding activity, suggesting that these residues are required for proper folding of the DNA-binding zinc finger.  相似文献   

19.
J Y Wang  H Ling  W Yang  R Craigie 《The EMBO journal》2001,20(24):7333-7343
Retroviral integrase, an essential enzyme for replication of human immunodeficiency virus type-1 (HIV-1) and other retroviruses, contains three structurally distinct domains, an N-terminal domain, the catalytic core and a C-terminal domain. To elucidate their spatial arrangement, we have solved the structure of a fragment of HIV-1 integrase comprising the N-terminal and catalytic core domains. This structure reveals a dimer interface between the N-terminal domains different from that observed for the isolated domain. It also complements the previously determined structure of the C-terminal two domains of HIV-1 integrase; superposition of the conserved catalytic core of the two structures results in a plausible full-length integrase dimer. Furthermore, an integrase tetramer formed by crystal lattice contacts bears structural resemblance to a related bacterial transposase, Tn5, and exhibits positively charged channels suitable for DNA binding.  相似文献   

20.
Hsp70 molecular chaperones contain three distinct structural domains, a 44 kDa N-terminal ATPase domain, a 17 kDa peptide-binding domain, and a 10 kDa C-terminal domain. The ATPase and peptide binding domains are conserved in sequence and are functionally well characterized. The function of the 10 kDa variable C-terminal domain is less well understood. We have characterized the secondary structure and dynamics of the C-terminal domain from the Escherichia coli Hsp70, DnaK, in solution by high-resolution NMR. The domain was shown to be comprised of a rigid structure consisting of four helices and a flexible C-terminal subdomain of approximately 33 amino acids. The mobility of the flexible region is maintained in the context of the full-length protein and does not appear to be modulated by the nucleotide state. The flexibility of this region appears to be a conserved feature of Hsp70 architecture and may have important functional implications. We also developed a method to analyze 15N nuclear spin relaxation data, which allows us to extract amide bond vector directions relative to a unique diffusion axis. The extracted angles and rotational correlation times indicate that the helices form an elongated, bundle-like structure in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号