首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Balsam fir (Abies balsamea) and black spruce (Picea mariana) forests are the main conifer forest types in the North American boreal zone. The coexistence of the two species as well as their respective canopy dominance in distinct stands raises questions about the long-term evolution from one forest type to the other in relation to environmental factors including climate and stand disturbance. We tested the hypothesis that repetitive fire events promote the succession of balsam fir forest to black spruce forest and vice versa. Postfire chronosequences of one black spruce (BSP) and one balsam fir (BFI) sites were reconstructed based on the botanical composition and 14C-dated soil macrocharcoals. The results support the hypothesis of a successional dynamics. The BSP site has been affected by fires for the last 7600 years, whereas the BFI site, after having been impacted by several fires during the first half of the Holocene, evolved in a fire-free environment for the last 4400 years. Periods of fire activity facilitated the dominance of black spruce forests. The cessation of fires around 4400 cal. years BP on BFI site marks the beginning of the transition from black spruce to balsam fir stands. This succession is a long process, due to the ability of black spruce to regenerate by layering in the absence of fire. The resulting balsam fir stands are ancient and precarious ecosystems, since fire generally leads to the return of black spruce. The increase in balsam fir to the detriment of black spruce in boreal forests is a response to a decrease in fire frequency.  相似文献   

2.
Fire is a major factor shaping the distribution of vegetation types. In this study, we used a recent high resolution map of potential natural vegetation (PNV) types and MODIS fire products to model and investigate the importance of fire as driver of vegetation distribution patterns in Ethiopia. We employed statistical modeling techniques to estimate the distribution of fire and the PNVs under current climatic conditions, and used the calibrated models to project distributions for different climate change scenarios. Results show a clear congruence between distribution patterns of fire and major vegetation types. The effect of climate change varies considerably between climate change models and scenarios, but as general trend expansions of moist Afromontane forest and CombretumTerminalia woodlands were predicted. Fire-prone areas were also predicted to increase, and including this factor in vegetation distribution models resulted in stronger expansion of CombretumTerminalia woodlands and a more limited increase of moist Afromontane forests. These results underline the importance of fire as a regulating factor of vegetation distribution patterns, and how fire needs to be factored into predict the possible effects of climate change. For conservation strategies to effectively address conservation challenges caused by rapid climate shifts, it is imperative that they not only consider the direct influence of climate changes on the vegetation, species species, or biodiversity patterns, but also the influence of future fire regimes.  相似文献   

3.
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.  相似文献   

4.
The invasive species Eupatorium adenophorum is known to influence stand structure and wildfire the hazard in forests. In the current work, we quantitatively examined fire effects in invaded and uninvaded plots in southwestern Sichuan Province, China, with five different forest sites that had different types of dominant species: Pinus yunnanensis, P. yunnanensisQuercus spp., Keteleeria fortunei, K. fortuneiQuercus spp., and Eucalyptus robusta. We compared the fuel chemistry (moisture, ash, heat value, and ignition point) and fire severity (flame length, fire intensity) under three burning conditions between the invaded and uninvaded plots in each forest sites, and then analyzed the results using multivariate response permutation procedures (MRPP). The burning conditions included: low (fine fuel moisture of 15 % and 5 km/h windspeed), moderate (fine fuel moisture of 10 % and 15 km/h windspeed), and extreme (fine fuel moisture of 5 % and 30 km/h windspeed). With all five sites, the fire severity and fuel loads were clearly significantly higher at the invaded sites. Fire severity was also intensified in the invaded coniferous sites compared to their mixed forest sites. These results indicate that biological invasions may increase the surface fire severity, perhaps through an increase in the heat value, and fuel loads, while reducing the moisture, ash, and ignition point of the understory herbaceous.  相似文献   

5.
Abandoned pollard beech forests are particular habitats that may require special conservation efforts to preserve the endangered beetle Rosalia alpina, a model species whose protection may perpetuate the habitat of many other saproxylic species. Forest use can determine the tree selection and population size of R. alpina, variables previously not researched in pollard forests. Selected tree traits and population size, indicated by presence of adult specimens and recent exit holes, were determined in a pollard beech forest before the implementation of habitat manipulations targeted to preserve the species. Multivariate analysis showed tree condition (living, snag, fallen) and clearing size and aspect as influential variables, with the former explaining more variance than the latter. R. alpina positively selected pollard snags and trees located in big and dry clearings, avoiding those in small clearings or shaded areas. Snags showed most adults (90 %) and recent emergence holes (84 %). Distance to the nearest occupied tree, trunk diameter, bark thickness and presence of sap leaks had no effect on the occurrence of R. alpina. Population size was estimated in 0.1 individuals day?1 ha?1, and 38 % of available habitat trees showed exit holes, values lower than those observed in other European countries. These results show the need to start re-pollardings in the forest to extend pollard standing life and enhance exposure to sunlight. Pinpointing pollard snags and clearing the surrounding vegetation are recommended as the first measures to be taken in order to favor R. alpina populations on pollard stands with closed canopies.  相似文献   

6.
Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.  相似文献   

7.
Leptospermum scoparium or mānuka is a New Zealand native medicinal plant that produces essential oils with antimicrobial properties. This study investigated the arbuscular mycorrhizal fungi (AMF) community in mānuka by culture dependent (trap culture) and independent (denaturing gradient gel electrophoresis) approaches. Furthermore, to assess whether mycorrhizal inoculation could alter growth and essential oil composition of mānuka, plants of a single regional chemotype were grown in unsterilized soil and inoculated with five AMF isolates. Leaf essential oil compositions and yields were determined by microscale solvent extraction and gas chromatography-mass spectrometry (GC-MS) analysis. AMF inoculation significantly increased growth compared to uninoculated plants. Qualitative i.e. different relative proportions of compounds, which are distinctive in chemotypes and quantitative (i.e. absolute concentrations of compounds, expressed as mg/g of dry leaf or equivalent) effects of AMF inoculation on mānuka essential oil composition depended on the isolate. AMF inoculation modified the Gammaproteobacterial community on roots and this may have contributed to changes in essential oil composition. Overall, these results demonstrated that AMF can improve the growth of mānuka and affect plant secondary metabolites in leaves, which would be valuable in commercial essential oil production from plantation-grown mānuka.  相似文献   

8.
At the time of Māori settlement, ca. 750 years ago, New Zealand's ecosystems experienced catastrophic change, including the introduction of fire to ignition‐limited ecosystems and the resulting widespread loss of forest. While high‐resolution sediment‐charcoal analyses suggest this forest loss was rapid, Māori populations were small and transient during the Initial Burning Period and there is evidence for widespread fire activity in places where there is little archaeological evidence of human presence. These observations beg the question ‘how did small populations manage to transform large areas so rapidly?’ Using a simulation model, we demonstrate how the relationship between time since fire and flammability in New Zealand's forests drives positive feedbacks that allow for rapid and extensive deforestation. Under ignition scenarios mirroring prehuman conditions, the model did not produce significant deforestation – thus, it is extremely unlikely that deforestation could have occurred without human‐initiated burning. Scenarios where ignition was spatio‐temporally random also failed to result in deforestation. Rapid and widespread forest loss occurred in scenarios incorporating spatio‐temporally savvy selection of ignition locations. Targeting ignitions in flammable vegetation was more important than targeting ignitions in years with favourable climatic conditions. However, targeting in space and time concurrently, such that flammable vegetation was ignited during favourable climatic years was the most efficient strategy of those simulated. Following the Initial Burning Period decadal ignitions would have been sufficient to maintain a deforested shrubland/grassland landscape. New Zealand's Initial Burning Period is one of many that occurred across eastern Polynesia following human settlement, and these events have left long‐term legacy effects that remain evident in contemporary landscapes. Improving understanding of how humans shaped environments in New Zealand in the past has implications for eastern Polynesia as a whole.  相似文献   

9.
The effects of vegetation types and environmental factors on carabid beetle (Coleoptera: Carabidae) communities were studied. Carabid beetles were collected using pitfall traps (total 2844 trapping days) and seven microenvironmental factors were measured in four vegetation types: grassland, natural evergreen coniferous forest (Pinus densiflora), deciduous broad-leaved natural forest (Quercus crispula, Betula platyphylla, Alnus japonica, or Fagus crenata), and deciduous coniferous plantation (Larix kaempferi) in cool temperate Japan. These four vegetation types provided a novel comparison between natural forests and plantations because the vast majority of related studies have investigated only deciduous broad-leaved natural forests and evergreen coniferous plantations. PERMANOVA indicated that vegetation types affected carabid community composition. Ordination plots showed that community composition differed greatly between grassland and forest vegetation types, but that community composition in the plantation forest overlapped with that of natural forest types. Characteristics differentiating the grassland included a high proportion of winged species and a low mean carabid body weight. Among the examined environmental factors, litter depth, soil water content, and depth of the soil A-horizon had large effects on carabid communities. These results suggest that the effect of afforestation on carabid communities in cool temperate Japan might be insignificant compared with the effects of cover types (deciduous vs. evergreen) and microenvironmental factors.  相似文献   

10.
The submontane belt of the eastern Alps is dominated by beech forests. However, on rocky and steep south-facing slopes, small vegetation mosaics have developed, which, to a certain degree, are similar to the Pannonian forest-steppes. In spite of their unique conservation importance and threatened status, they have received relatively little scientific attention. In this study we analyzed the spatial pattern of such mosaics. More specifically, our objective was to find out how canopy cover value influences the species composition of the herb layer. According to our results, canopy cover of Pinus sylvestris has a rather limited effect on the herb layer composition and species richness. Thus, in the studied canopy cover range (ca. 5–75% canopy cover), most species occurred under all canopy cover grades. This is presumably a result of the canopy characteristics and branching pattern of P. sylvestris: it can be assumed that the physical conditions of the canopy and intercanopy patches are somewhat similar. This is in sharp contrast with the Pannonian forest-steppes dominated by Quercus pubescens. We conclude that, even though the cessation of traditional land-use may not result in a rapid change of the composition in eastern Austrian forest-steppes, every effort must be made to conserve these valuable habitats.  相似文献   

11.
Coniferous forests are a significant feature in the natural vegetation of the Mediterranean mountains, but most stands are rather degraded and the present distribution is just a fraction of its potential natural area. The Parnonas range (Peloponnese, Greece) ranks among the most extensive areas with a well-preserved mountain coniferous forest in the Mediterranean. The present paper aims at describing the conifer-dominated vegetation of this mountain and the ecological roles of the prevailing speciesAbies cephalonica, Pinus nigra, andJuniperus drupacea. For comparison, a survey is provided of theAbies cephalonica forests in the total distribution area, using all published relevés. Species composition and abundance, together with structural and abiotic parameters were recorded in 118 relevés distributed throughout Mt. Parnon. The phytosociological classification reveals 8 interpretable vegetation types well separated by groups of diagnostic species and presented in a synoptic table. The ecology and distribution of the units are outlined, and they are assigned to 4 associations within theAbietion cephalonicae (Helictotricho convoluti-Abietetum cephalonicae, Junipero drupaceae-Abietetum cephalonicae, Lilio chalcedonicae-Abietetum cephalonicae, Pyrolo chloranthae — Pinetum nigrae). The syntaxonomy and nomenclature of these associations, two of which are described as new, are discussed. The most important gradients in the data matrix found by detrended correspondence analysis (DCA) are related to altitude/climate and rockiness/soil. The communities are well segregated in the ordination space, and the fairly distinct clusters of the three conifer species are discussed. These conifers may be arranged along a gradient of decreasing drought tolerance fromJuniperus throughAbies toPinus. The latter is predominant and most vital essentially on schistose soils, or else reflects previous disturbance by, e.g., wildfires.Juniperus drupacea is a subordinate low tree or shrub in Tripolitza limestoneAbies forest. The vitality ofAbies cephalonica as expressed by tree height and structure is best in theLilio-Abietetum, between 1300 and 1600 m. The community variation within the total area of theAbietion cephalonicae reflects a principal differentiation in xerophytic and mesophytic stands. This pattern is encountered in various mountains and suggests that water supply is the crucial factor governing the floristic variation in the mountain coniferous forests.  相似文献   

12.
Global change models predict that high-latitude boreal forests will become increasingly susceptible to fire activity as climate warms, possibly causing a positive feedback to warming through fire-driven emissions of CO2 into the atmosphere. However, fire-climate feedbacks depend on forest regrowth and carbon (C) accumulation over the post-fire successional interval, which is influenced by nitrogen (N) availability. To improve our understanding of post-fire C and N accumulation patterns in boreal forests, we evaluated above- and belowground C and N pools within 70 stands throughout interior Alaska, a region predicted to undergo a shift in canopy dominance as fire severity increases. Stands represented gradients in age and successional trajectory, from black spruce (Picea mariana) self-replacement to species replacement by deciduous species of trembling aspen (Populus tremuloides) and Alaska paper birch (Betula neoalaskana). Stands undergoing deciduous trajectories stored proportionally more of their C and N in aboveground stemwood and had 5–7 times faster rates of aboveground net primary productivity of trees compared to stands undergoing a black spruce trajectory, which stored more of their C and N in the soil organic layer (SOL), a thick layer of mostly undecomposed mosses. Thus, as successional trajectories shift, total C and N pool sizes will remain relatively unchanged, but there will be a trade-off in pool location and a potential increase in C and N longevity due to decreased flammability and decomposition rates of deciduous stemwood. Despite often warmer, drier conditions in deciduous compared to black spruce stands, deciduous stemwood has a C:N around 10 times higher than the black spruce SOL and often remains standing for many years with reduced exposure to fungal decomposers. Thus, a fire-driven shift in successional trajectories could cause a negative feedback to climate warming because of increased pool longevity in deciduous trajectories.  相似文献   

13.
A field study using satellite images was carried out to analyze the effect of coastal vegetation in mitigating the impact of a catastrophic tsunami on coastal villages in the Biobío Region, Chile, in February 2010. Two types of stand, Pinus radiata D. Don forests and Cupressus macrocarpa Hartw. shelterbelts, appear to have protected coastal areas behind them from the direct impact of the tsunami. The impacts of the horizontal and vertical structures of these coastal forests on the drag forces were analyzed by observing the characteristics of Pinus radiata forests and Cupressus macrocarpa shelterbelts. The stands absorbed the impact of the tsunami without incurring broken stems or uprooted trees due to their diverse horizontal structure, as they contained short trees with various diameters. However, small areas of the stands were damaged by salinity after the tsunami. For this tsunami, which was less than 3 m high, the horizontal and vertical structures of the P. radiata and C. macrocarpa stands provided effective protection for coastal villages since they reduced the velocity and height of the tsunami. A shelterbelt consisting of three rows of C. macrocarpa in front of the tsunami and a P. radiata forest with a density of 11 trees/100 m2 and a width of >50 m immediately behind the shelterbelt are suggested as a means of protecting communities along the coastline of the Biobío Region against tsunamis.  相似文献   

14.
Abstract

Detailed knowledge of factors controlling fire regime is a prerequisite for efficient fire management. We analyzed the fire selectivity of given forest vegetation classes both in terms of fire frequency and fire size for the present fire regime (1982–2005) in Canton Ticino (southern Switzerland). To this end, we investigated the dataset in four categories (all fires, anthropogenic winter fires, anthropogenic summer fires, and natural summer fires) and performed 1000 random Monte Carlo simulations on frequency and size. Anthropogenic winter and summer fires have a similar selectivity, occurring mostly at low elevations in chestnut stands, broadleaved forests, and in the first 50 m from the forest edge. In winter half of the fires in chestnut stands are significantly larger than 1.0 ha and the average burnt area in some coniferous forests tends to be high. Lightning fires seem to occur more frequently in spruce stands and less often in the summer‐humid chestnut and beech stands and the 50–100 m buffer area. In beech forests, in mixed forests, and in the spruce stands affected by natural fire in summer, the fires tend to be small in size. The selectivity observed, especially the selectivity of anthropogenic fires in terms of fire frequency, seems to be also related to geographical parameters such as altitude and aspect, and to anthropogenic characteristics such as closeness to roads or buildings.  相似文献   

15.
Investigations were carried out in June–August 2012 and 2013 in broadleaf forests and planted stands of the northern red oak Quercus rubra in Kiev. The ant visitation rates of 3–6 most abundant plant species within each vegetation layer were analyzed. In all, 16 species of ants were found in the broadleaf forest (Quercus robur + Acer spp. + Carpinus betulus), with the dominance of three species: Formica rufa, Lasius fuliginosus, and L. emarginatus. Eight ant species occurred in Q. rubra stands with the undergrowth of Acer campestre and A. platanoides; the dominant species were Lasius fuliginosus and L. emarginatus. The northern red oak stands with conspecific undergrowth had only four ant species with no dominants among them. Plants with the highest ant visitation rates in the herbage layer of the broadleaf forest were the invasive Impatiens parviflora and the native Aegopodium podagraria. Ants were rare or absent on the remaining herbs: Impatiens noli-tangere, Carex sylvatica, Stellaria holostea, and Galium odoratum. The herbage layer was mostly visited by influents, the dominants being represented only by Lasius emarginatus. Within the shrub layer, ants most frequently visited the undergrowth of the maple Acer platanoides, often harboring colonies of the aphid Periphyllus lyropictus; the highest visitation rates were recorded in the dominants L. emarginatus and L. fuliginosus. The arboreal layer had the highest visitation rate and was most often visited by the dominants Lasius fuliginosus, L. emarginatus, and F. rufa. The common oak Q. robur was the most visited tree in broadleaf forests. In addition to providing ants with food (colonies of the aphids Lachnus roboris and Stomaphis quercus, and also phytophagous insects and other invertebrates), these trees were used for nesting by the dominants L. fuliginosus and L. emarginatus. The presence of aphid colonies was also typical of ripe trees and undergrowth of the maple A. platanoides, the second-visited tree in broadleaf forests. The common hornbeam Carpinus betulus was the least frequently visited, though some ant species, usually L. emarginatus, nested in the trunks and branches of old trees. The vertical distribution of ants in broadleaf forests and red oak stands formed two clusters: the influents occupied the lower (herbage and shrub) vegetation layers, while the subdominants and dominants occupied the upper (shrub and arboreal) ones. The smallest number of ant species (1 or 2) in all the vegetation layers was recorded in the areas with F. rufa; areas with L. fuliginosus had twice as many species; the greatest numbers of ant species were found in the areas with L. emarginatus and in those without dominants. This pattern may result from different territoriality of the dominants: the strongest in F. rufa (defending the whole territory) and the weaker in the other two species (defending only a part of the territory). Plants of all the vegetation layers varied in their attractiveness to ants. As a result, the layers had a mosaic structure in their vertical (between-layer) and horizontal (between different plant species within one layer) arrangement. From 60 to 100% of plants of certain species were visited by ants while plants of other species were not visited at all. The main reason for visiting plants by ants was the presence of aphid colonies.  相似文献   

16.
Distributions of lucidophyllous species are limited due to the fragmentation of laurel forest. On Komayama Hill in central Japan, we evaluated the colonization of typical lucidophyllous vascular plants from a 350-year-old laurel forest into adjacent abandoned secondary forest for conservation and restoration purposes. A total of 14 consecutive subplots were established along the vegetation border between the two forests (length, 30 m; width, 5 m), extending 70 m into the secondary forest; 18 quadrats of old-growth forest were surveyed. Edge effects of old-growth forest were found to play an important role in re-establishing lucidophyllous saplings and seedlings in the secondary forest. In particular, the abundances of the four dominant canopy species of the old-growth forest significantly decreased with increasing distance. Hence, they are expected to colonize further into the secondary forest and, ultimately, to dominate the canopy. However, the number of lucidophyllous species did not change with distance. Species such as Ficus nipponica, Damnacanthus indicus, Ilex integra, and Lemmaphyllum microphyllum were near-completely or completely limited to the old-growth forest. They are known to be negatively affected by forest fragmentation and were observed to be struggling to colonize the exterior of the old-growth forest even after 60 years of abandonment. Their absence highlighted the limited colonization capacities of some old-growth forest species and underlined the time required for habitat restoration following human disturbance. We conclude that it is important to consider the population dynamics of dominant canopy species and the colonization of these interior species when assessing the habitat expansion of lucidophyllous species and hence the restoration of degraded lands.  相似文献   

17.
Long-term dynamics of small mammal communities are perennial themes in population ecology. However, comprehensive studies on the effect of environmental factors on population dynamics are still rare. Here, we aimed to analyze long-term data on Central European communities of small mammals occurring in two habitats that greatly differed in their structure, successional stages, and forest management. We found a richer community structure in young spruce plantations compared to mature European beech forests. In young spruce plantations, Myodes glareolus and Apodemus flavicollis abundances increased and Sorex araneus abundances decreased during the study period as a result of forest growth and management. Community structure in mature beech forests did not change significantly during the study period. Apodemus flavicollis and Myodes glareolus showed 3- and 5-year population cycles, respectively, and their abundances were simultaneously positively correlated with relative abundance of masts. Weather also played a role, while the effect of snow cover was pronounced only in mountain areas where it negatively affected Microtus agrestis and Sorex araneus abundances, temperature positively and rainfall negatively influenced Myodes glareolus and Apodemus flavicollis abundances across both studied habitats. Our findings document that a complex of environmental factors significantly affects the structure and dynamics of small mammal communities in Central Europe, and both local biotic and abiotic factors should be considered in future studies.  相似文献   

18.
Coniferous plantations have been widely used by reforestation programs seeking to mitigate the effects of deforestation in mountainous areas in different parts of the world. However, some studies show that pine plantations can simulate natural mechanisms of succession, thereby facilitating the incorporation of other native species of mid- and late-successional stages. Existing pine plantations could function as a substitute habitat and facilitate the establishment of native and endangered cloud forest species. To test this hypothesis, we planted two endangered species from the family Juglandaceae (Juglans pyriformis and Oreomunnea mexicana) under twelve-year-old canopy plantations of Pinus patula and compared them to individuals planted in open (control) sites and recorded their survival and growth. The results show that the survival of J. pyriformis and O. mexicana was significantly higher below the canopy of P. patula plantations than in the open site. However, growth rates varied significantly among species and sites. Although pine plantations may favor the survival of seedlings, they cannot ensure the growth of plants without additional forest management.  相似文献   

19.
Forest management with N-fixing trees can improve soil fertility and tree productivity, but have little information regarding belowground carbon processes and microbial properties. We aimed to evaluate the effects of three forest management regimes, which were Erythrophleum fordii (N-fixing tree), Pinus massoniana (non-N-fixing tree), and their mixed forest, on soil respiration and microbial community composition in subtropical China, using Barometric Process Separation and phospholipid fatty acid profiles, respectively. We found that the inclusions of N-fixing species in forests significantly increased the soil respiration, but have no effects on SOC and ecosystem total C stock. In addition, soil microbial communities were obviously different among the three forest management regimes. For instance, total and bacterial PLFAs were higher in the E. fordii and mixed forest than in the P. massoniana forest. Conversely, fungal PLFAs in the P. massoniana forest were elevated versus the other two forests. Soil total N, nitrate-N and pH were the key determinants shaping the microbial community composition. Our study suggests that variations in soil respiration in the studied forests could be primarily explained by the differences of root biomass and soil microbial biomass, but not soil organic carbon. Although soil fertility and microbial biomass were promoted, N-fixing plantings also brought on increased CO2 emissions in laboratory assays. The future decision of tree species selection for forest management in subtropical China therefore needs to consider the potential influences of tree species on CO2 emissions.  相似文献   

20.

Background

For 15+ years, a beech (Fagus sylvatica L.) dominated forest on calcareous soil was studied on two opposing slopes with contrasting microclimate in Tuttlingen, Swabian Alb, Germany. The cool-humid NE aspect of these slopes represents the majority of beech forests under current climate, the warmer and drier SW aspect represents beech forests under future climate conditions. The field studies were supplemented by investigations under controlled conditions.

Scope

The research program aimed to provide a comprehensive understanding of plant-soil-microbe water, carbon and nitrogen feedbacks in a changing climate and a holistic view of the sensitivity of beech to climate change.

Conclusions

The results of comparative and experimental studies underpin the high vulnerability of adult beech and its natural regeneration on calcareous soil to both direct climate change effects on plant physiology and indirect effects mediated by soil biogeochemical cycles. Mechanisms contributing to this vulnerability at the ecosystem and organismic level indicate a high significance of competitive interactions of beech with other vegetation components and soil microbial communities. Obvious forest management practices such as selective felling did not necessarily counteract negative effects of climate change.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号