首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slow rates of plant production and decomposition in ombrotrophic bogs are believed to be partially the result of low nutrient availability. To test the effect of nutrient availability on decomposition, carbon dioxide (CO2) flux dynamics, microbial biomass, and nutrients, we added nitrogen (N) with phosphorus (P) and potassium (K), to prevent limitation of the latter 2 nutrients, over 2 growing seasons to plots at Mer Bleue peatland, Ontario, Canada. After the first growing season, increasing N fertilization (with constant P and K) decreased in vitro CO2 production potential and increased microbial biomass measured with a chloroform fumigation-extraction technique in the upper peat profile, while by the end of the second season, CO2 production potential was increased in response to N plus PK treatment, presumably due to more easily decomposable newly formed plant material. In situ CO2 fluxes measured using chamber-techniques over the second year corroborated this presumption, with greater photosynthetic CO2 uptake and ecosystem respiration (ER) during high N plus PK treatments. The more efficient microbial community, with slower CO2 production potential and larger biomass, after the first year was characterized by larger fungal biomass measured with signature phospholipid fatty acids. The majority of N was likely quickly sequestered by the vegetation and transferred to dissolved organic forms and microbial biomass in the upper parts of the peat profile, while additional P relative to controls was distributed throughout the profile, implying that the vegetation at the site was N limited. However, in situ CO2 flux data suggested the possibility of P or NPK limitation. We hypothesize that nutrient deposition may lead to enhanced C uptake by altering the microbial community and decomposition, however this pattern disappears through subsequent changes in the vegetation and production of more readily decomposable plant tissues.  相似文献   

2.
Ecosystems - Dissolved organic matter (DOM) dynamics influence aquatic ecosystem metabolism with ecological and biogeochemical effects. During microbial degradation, certain DOM molecules...  相似文献   

3.
Ecosystem respiration (ER) is an important but poorly understood part of the carbon (C) budget of peatlands and is controlled primarily by the thermal and hydrologic regimes. To establish the relative importance of these two controls for a large ombrotrophic bog near Ottawa, Canada, we analyzed ER from measurements of nighttime net ecosystem exchange of carbon dioxide (CO2) determined by eddy covariance technique. Measurements were made from May to October over five years, 1998 to 2002. Ecosystem respiration ranged from less than 1 μmol CO2 m−2 s−1 in spring (May) and fall (late October) to 2–4 μmol CO2 m−2 s−1 during mid-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0.62). Q10 between 5° to 15°C varied from 2.2 to 4.2 depending upon the choice of depth where temperature was measured and location within a hummock or hollow. There was only a weak relationship between ER and water-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in production due to drying from below a depth of 30 cm. We postulate that the weak correlation between ER and water table position in this peatland is primarily a function of the bog being relatively dry, with water table varying between 30 and 75 cm below the hummock tops. The dryness gives rise to a complex ER response to water table involving i) compensations between production of CO2 in the upper and lower peat profile as the water table falls and ii) the importance of autotrophic respiration, which is relatively independent of water-table position.  相似文献   

4.
The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV–Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13–15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation leachates, and to the microbially altered DOC from all vegetation leachates.  相似文献   

5.
We measured the concentrations and isotopic values (14C and 13C) of dissolved inorganic, dissolved organic, and particulate organic carbon (DIC, DOC, and POC, respectively) in the Parker River watershed and estuary in Massachusetts, USA, to determine the age of carbon (C) entering the estuary and how estuarine processing affects the quantity and apparent age of C transported to the Gulf of Maine. The watershed measurements indicated the transport of 14C-enriched modern DIC and DOC and variably aged POC from the watershed to the estuary. The transport of organic matter from the watershed was dominated by DOC transport, with POC making up less than 10% of the total. Surveys within the watershed aimed at determining which land-use type dominated the DOC export indicated that wetlands, although they made up only around 20% of the land use, could be responsible for approximately 75% of the DOC export. We therefore conclude that the wetland land uses of the Parker River watershed are exporting mainly 14C-enriched modern DOC. DIC isotopes indicate that the source of DIC in the Parker River watershed is dominated by the weathering of noncarbonate parent material by 14C-enriched carbon dioxide (CO2) originating from the respiration of young organic matter in soils. Transects in the estuary displayed net additions of all C species. For DOC and DIC, the export of this internally added DOC and DIC was approximately equal to the amount being exported from the watershed, showing the importance of focusing on estuaries when estimating the export of C to the coastal ocean. With respect to DIC, the total input is even larger when the atmospheric exchange of excess pCO2 is calculated. The 14C-DOC and 14C-DIC transects indicate that the internally added DOC and DIC is 14C-enriched modern material. The source of this material is the fringing marshes and estuarine phytoplankton, with the relative importance of these two sources changing over time. Taken together, the bulk C and 14C measurements show that the estuary is adding significant quantities of young DOC despite the presence of vast quantities of old marsh peat flanking the entire estuary. Furthermore, the DIC data indicate that 14C-enriched modern material is what is fueling the majority of heterotrophic respiration within the system.  相似文献   

6.
Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or “in-situ” experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants.  相似文献   

7.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

8.
Samples of phytobenthos were collected during three different seasons in 2005 along a linear transect of a lowland peat bog at various spatial scales (10 cm, 1 m, 10 m) to investigate the seasonal dynamics, diversity, and factors influencing the spatial patterns of microalgal communities. Non‐metric multidimensional scaling (NMDS), similarity percentage (SIMPER) analyses, ANOSIM, Mantel tests and diversity indices were used to analyze the data. Seasonal dynamics were exhibited by an increase in diversity, and a decrease in dominance from May to October, with significant differences in species composition. Mantel tests showed the significant influence of distance, microhabitat type, and conductivity on maintaining the similarity of species composition on scales of 1 m and 10 m. The small‐scale processes (colonization and niche differentiation), microhabitat type, geographic distance and conductivity were found to be the main factors influencing the distribution of algal assemblages. We conclude that these factors are related to winter disturbance, and the consequent colonization and subsequent niche differentiation. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Leaf Litter as a Source of Dissolved Organic Carbon in Streams   总被引:4,自引:1,他引:4  
Dissolved organic carbon (DOC) is an abundant form of organic matter in stream ecosystems. Most research has focused on the watershed as the source of DOC in streams, but DOC also comes from leaching of organic matter stored in the stream channel. We used a whole-ecosystem experimental approach to assess the significance of leaching of organic matter in the channel as a source of DOC in a headwater stream. Inputs of leaf litter were excluded from a forested Appalachian headwater stream for 3 years. Stream-water concentration, export, and instream generation of DOC were reduced in the litter-excluded stream as compared with a nearby untreated reference stream. The proportion of high molecular weight (HMW) DOC (more than 10,000 daltons) in stream water was not altered by litter exclusion. Mean DOC concentration in stream water was directly related to benthic leaf-litter standing stock. Instream generation of DOC from leaf litter stored in the stream channel contributes approximately 30% of daily DOC exports in this forested headwater stream. This source of DOC is greatest during autumn and winter and least during spring and summer. It is higher during increasing discharge than during base flow. We conclude that elimination of litter inputs from a forested headwater stream has altered the biogeochemistry of DOC in this ecosystem. Received 2 September 1997; accepted 27 January 1998.  相似文献   

10.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

11.
Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model   总被引:34,自引:3,他引:34  
The movement of dissolved organic carbon (DOC) through soils is an important process for the transport of carbon within ecosystems and the formation of soil organic matter. In some cases, DOC fluxes may also contribute to the carbon balance of terrestrial ecosystems; in most ecosystems, they are an important source of energy, carbon, and nutrient transfers from terrestrial to aquatic ecosystems. Despite their importance for terrestrial and aquatic biogeochemistry, these fluxes are rarely represented in conceptual or numerical models of terrestrial biogeochemistry. In part, this is due to the lack of a comprehensive understanding of the suite of processes that control DOC dynamics in soils. In this article, we synthesize information on the geochemical and biological factors that control DOC fluxes through soils. We focus on conceptual issues and quantitative evaluations of key process rates to present a general numerical model of DOC dynamics. We then test the sensitivity of the model to variation in the controlling parameters to highlight both the significance of DOC fluxes to terrestrial carbon processes and the key uncertainties that require additional experiments and data. Simulation model results indicate the importance of representing both root carbon inputs and soluble carbon fluxes to predict the quantity and distribution of soil carbon in soil layers. For a test case in a temperate forest, DOC contributed 25% of the total soil profile carbon, whereas roots provided the remainder. The analysis also shows that physical factors—most notably, sorption dynamics and hydrology—play the dominant role in regulating DOC losses from terrestrial ecosystems but that interactions between hydrology and microbial–DOC relationships are important in regulating the fluxes of DOC in the litter and surface soil horizons. The model also indicates that DOC fluxes to deeper soil layers can support a large fraction (up to 30%) of microbial activity below 40 cm. Received 14 January 2000; accepted 6 September 2000  相似文献   

12.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

13.
Trends in Dissolved Organic Carbon in UK Rivers and Lakes   总被引:11,自引:6,他引:5  
Several studies have highlighted an increase in DOC concentration in streams and lakes of UK upland catchments though the causal mechanisms controlling the increase have yet to be fully explained. This study, compiles a comprehensive data set of DOC concentration records for UK catchments to evaluate trends and test whether observed increases are ubiquitous over time and space. The study analysed monthly DOC time series from 198 sites, including 29 lakes, 8 water supply reservoirs and 161 rivers. The records vary in length from 8 to 42 years going back as far as 1961. Of the 198 sites, 153 (77%) show an upward trend in DOC concentration significant at the 95% level, the remaining 45 (23%) show no significant trend and no sites show a significant decrease in DOC concentration. The average annual increase in DOC concentration was 0.17 mg C/l/year. The dataset shows: (i) a spatial consistent upward trend in the DOC concentration independent of regional effects of rainfall, acid and nitrogen deposition, and local effects of land-use change; (ii) a temporally consistent increase in DOC concentration for period back as far as the 1960s; (iii) the increase in DOC concentration means an estimated DOC flux from the UK as 0.86 Mt C for the year 2002 and is increasing at 0.02 Mt C/year. Possible reasons for the increasing DOC concentration are discussed.  相似文献   

14.
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4–N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of DOM fluorescence. Seasonal DOM slug additions were conducted in three headwater streams draining a bog, forested wetland, and upland forest using DOM collected by leaching watershed soils. We also used DOM collected from bog soil and salmon carcasses to perform additions in the upland forest stream. DOC uptake velocity ranged from 0.010 to 0.063 mm s−1 and DON uptake velocity ranged from 0.015 to 0.086 mm s−1, which provides evidence for the whole-stream uptake of allochthonous DOM. These findings imply that wetlands could potentially be an important source of DOM to support stream heterotrophic production. There was no significant difference in the uptake of DOC and DON across the soil leachate additions (P > 0.05), although differential uptake of DOM fractions was observed as protein-like fluorescence was removed from the water column more efficiently than bulk DOC and DON (P < 0.05). Moreover, PARAFAC analysis of DOM fluorescence showed that protein-like fluorescence decreased downstream during all DOM additions, whereas humic-like fluorescence did not change. This differential processing in added DOM suggests slow and fast turnover pools exist for aquatic DOM. Taken together, our findings argue that DON could potentially fill a larger role in satisfying biotic N demand in oligotrophic headwater streams than previously thought. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions  J.B.F. conceived of or designed study, performed research, analyzed data, contributed new methods or models, and wrote the paper. E.H. conceived of or designed study and analyzed data. R.T.E. conceived of or designed study and analyzed data. J.B.J. contributed new methods or models and analyzed data.  相似文献   

15.
16.
Determination of biodegradable dissolved organic carbon in waters is of particular importance for the water treatment industry. A simple method for determining biodegradable dissolved organic carbon which is applicable to surface and drinking water is proposed. It consists of sterilizing the water sample, inoculating it with autochthonous bacteria, and measuring the decrease in dissolved organic carbon concentration due to the carbon oxidization by bacteria. The detailed experimental procedure is discussed, and validation of the method is presented. The method has been used for studying river waters and for drinking water treatment plant design.  相似文献   

17.
Dissolved organic matter (DOM) plays an important role in transporting carbon and nitrogen from forest floor to mineral soils in temperate forest ecosystems. Thus, the retention of DOM via sorption or microbial assimilation is one of the critical steps for soil organic matter formation in mineral soils. The chemical properties of DOM are assumed to control these processes, yet we lack fundamental information that links litter quality, DOM chemistry, and DOM retention. Here, we studied whether differences in litter quality affect solution chemistry and whether changes in litter inputs affect DOM quality and removal in the field. The effects of litter quality on solution chemistry were evaluated using chemical fractionation methods for laboratory extracts and for soil water collected from a temperate coniferous forest where litter inputs had been altered. In a laboratory extraction, litter type (needle, wood, root) and the degree of decomposition strongly influenced solution chemistry. Root litter produced more than 10 times more water-extractable dissolved organic N (DON) than any other litter type, suggesting that root litter may be most responsible for DON production in this forest ecosystem. The chemical composition of the O-horizon leachate was similar under all field treatments (doubled needle, doubled wood, and normal litter inputs). O-horizon leachate most resembled laboratory extracts of well-decomposed litter (that is, a high proportion of hydrophobic acids), in spite of the significant amount of litter C added to the forest floor and a tendency toward higher mean DOM under doubled-Litter treatments. A lag in DOM production from added litter or microbial modification might have obscured chemical differences in DOM under the different treatments. Net DOM removal in this forest soil was strong; DOM concentration in the water deep in the mineral soil was always low regardless of concentrations in water that entered the mineral soil and of litter input manipulation. High net removal of DOM from O-horizon leachate, in spite of extremely low initial hydrophilic neutral content (labile DOM), coupled with the lack of influence by season or soil depth, suggests that DOM retention in the soil was mostly by abiotic sorption.  相似文献   

18.
19.
Increasing input of terrestrial dissolved organic carbon (DOC) has been identified as a widespread environmental phenomenon in many aquatic ecosystems. Terrestrial DOC influences basal trophic levels: it can subsidize pelagic bacterial production and impede benthic primary production via light attenuation. However, little is known about the impacts of elevated DOC concentrations on higher trophic levels, especially on top consumers. Here, we used Eurasian perch (Perca fluviatilis) to investigate the effects of increasing DOC concentrations on top predator populations. We applied stable isotope analysis and geometric morphometrics to estimate long-term resource and habitat utilization of perch. Habitat coupling, the ability to exploit littoral and pelagic resources, strongly decreased with increasing DOC concentrations due to a shift toward feeding predominantly on pelagic resources. Simultaneously, resource use and body morphology became increasingly alike for littoral and pelagic perch populations with increasing DOC, suggesting more intense competition in lakes with high DOC. Eye size of perch increased with increasing DOC concentrations, likely as a result of deteriorating visual conditions, suggesting a sensory response to environmental change. Increasing input of DOC to aquatic ecosystems is a common result of environmental change and might affect top predator populations in multiple and complex ways.  相似文献   

20.
Leaching of dissolved organic carbon (DOC) from the O layer is important for the carbon cycling of forest soils. Here we study the role of the Oi, Oe and Oa horizons in DOC leaching from the forest floor in field manipulations carried out in a Norway spruce forest stand in southern Sweden. The manipulations involved the addition and removal of litter and the removal of Oi, Oe and Oa horizons. Our data suggest that both recent litter and humified organic matter contribute significantly to the leaching of dissolved organic matter from the O layer. An addition of litter corresponding to four times annual litterfall resulted in a 35% increase in DOC concentrations and fluxes although the specific UV absorbance remained unchanged. The removal of litterfall and the Oi horizon resulted in a decreased DOC concentration and in a significant increase in the molar UV absorptivity. The DOC concentration under the Oa horizon was not significantly different from that under the Oe horizon and there were no increase in DOC flux, but rather a decrease, from the bottom of the Oe horizon to the bottom of the Oa horizon, suggesting that there is no net release of DOC in the Oa horizon. However, significant leaching of DOC occurred from the Oa horizon when litterfall and the Oi and Oe horizons were removed. This indicates that there is both a removal of DOC from the Oi and Oe horizons and a substantial production of DOC in the Oa horizon. Quantitatively, we suggest that the Oi, Oe and Oa horizons contributed approximately 20, 30 and 50%, respectively, to the overall leaching of DOC from the O layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号