首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide excision repair (NER) in higher organisms repair massive DNA abrasions caused by ultraviolet rays, and various mutagens, where Xeroderma pigmentosum group A (XPA) protein is known to be involved in damage recognition step. Any mutations in XPA cause classical Xeroderma pigmentosum disease. The extent to which XPA is required in the NER is still unclear. Here, we present the comparative study on the structural and conformational changes in globular DNA binding domain of XPA98–210 in DNA bound and DNA free state. Atomistic molecular dynamics simulation was carried out for both XPA98–210 systems using AMBER force fields. We observed that XPA98–210 in presence of damaged DNA exhibited more structural changes compared to XPA98–210 in its free form. When XPA is in contact with DNA, we found marked stability of the complex due to the formation of characteristic longer antiparallel β-sheets consisting mainly lysine residues.  相似文献   

2.
The Xeroderma pigmentosum complementation group A (XPA) protein functions as a primary damage verifier and as a scaffold protein in nucleotide excision repair (NER) in all higher organisms. New evidence of XPA’s existence as a dimer and the redefinition of its DNA-binding domain (DBD) raises new questions regarding the stability and functional position of XPA in NER. Here, we have investigated XPA’s dimeric status with respect to its previously defined DBD (XPA98-219) as well as with its redefined DBD (XPA98-239). We studied the stability of XPA98-210 and XPA98-239 homo-dimer systems using all-atom molecular dynamics simulation, and we have also characterized the protein–protein interactions (PPI) of these two homo-dimeric forms of XPA. After conducting the root mean square deviation (RMSD) analyses, it was observed that the XPA98-239 homo-dimer has better stability than XPA98-210. It was also found that XPA98-239 has a larger number of hydrogen bonds, salt bridges, and hydrophobic interactions than the XPA98-210 homo-dimer. We further found that Lys, Glu, Gln, Asn, and Arg residues shared the major contribution toward the intermolecular interactions in XPA homo-dimers. The binding free energy (BFE) analysis, which used the molecular mechanics Poisson–Boltzmann method (MM-PBSA) and the generalized Born and surface area continuum solvation model (GBSA) for both XPA homo-dimers, also substantiated the positive result in favor of the stability of the XPA98-239 homo-dimer.

Communicated by Ramaswamy H. Sarma  相似文献   


3.
Proliferating cell nuclear antigen (PCNA) is an essential protein for DNA replication, DNA repair, cell cycle regulation, chromatin remodeling, and epigenetics. Many proteins interact with PCNA through the PCNA interacting peptide (PIP)-box or the newly identified AlkB homolog 2 PCNA interacting motif (APIM). The xeroderma pigmentosum group A (XPA) protein, with a central but somewhat elusive role in nucleotide excision repair (NER), contains the APIM sequence suggesting an interaction with PCNA. With an in vivo based approach, using modern techniques in live human cells, we show that APIM in XPA is a functional PCNA interacting motif and that efficient NER of UV lesions is dependent on an intact APIM sequence in XPA. We show that XPA−/− cells complemented with XPA containing a mutated APIM sequence have increased UV sensitivity, reduced repair of cyclobutane pyrimidine dimers and (6–4) photoproducts, and are consequently more arrested in S phase as compared to XPA−/− cells complemented with wild type XPA. Notably, XPA colocalizes with PCNA in replication foci and is loaded on newly synthesized DNA in undamaged cells. In addition, the TFIIH subunit XPD, as well as XPF are loaded on DNA together with XPA, and XPC and XPG colocalize with PCNA in replication foci. Altogether, our results suggest a presence of the NER complex in the vicinity of the replisome and a novel role of NER in post-replicative repair.  相似文献   

4.
Elisa Fadda 《Biophysical journal》2013,104(11):2503-2511
XPA is an essential protein in the nucleotide excision repair (NER) pathway, in charge of recruiting the ERCC1-XPF endonuclease complex to the DNA damage site. The only currently available structural insight into the binding of XPA to ERCC1 derives from the solution NMR structure of a complex between the ERCC1 central fragment and a 14-residue peptide, corresponding to the highly conserved binding motif of the XPA N-terminus, XPA67-80. The extensive all-atom molecular-dynamics simulation study of the XPA67-80 peptide both bound to the ERCC1 central fragment and free in solution presented here completes the profile of the structural determinants responsible for the ERCC1/XPA67-80 complex stability. In addition to the wild-type, this study also looks at specific XPA67-80 mutants in complex with the ERCC1 central domain and thus contributes to defining the conformational determinants for binding, as well as all of the essential structural elements necessary for the rational design of an XPA-based, ERCC1-specific inhibitor.  相似文献   

5.
The xeroderma pigmentosum group A protein (XPA) is a core component of nucleotide excision repair (NER). To coordinate early stage NER, XPA interacts with various proteins, including replication protein A (RPA), ERCC1, DDB2, and TFIIH, in addition to UV-damaged or chemical carcinogen-damaged DNA. In this study, we investigated the effects of mutations in the RPA binding regions of XPA on XPA function in NER. XPA binds through an N-terminal region to the middle subunit (RPA32) of the RPA heterotrimer and through a central region that overlaps with its damaged DNA binding region to the RPA70 subunit. In cell-free NER assays, an N-terminal deletion mutant of XPA showed loss of binding to RPA32 and reduced DNA repair activity, but it could still bind to UV-damaged DNA and RPA. In contrast, amino acid substitutions in the central region reduced incisions at the damaged site in the cell-free NER assay, and four of these mutants (K141A, T142A, K167A, and K179A) showed reduced binding to RPA70 but normal binding to damaged DNA. Furthermore, mutants that had one of the four aforementioned substitutions and an N-terminal deletion exhibited lower DNA incision activity and binding to RPA than XPA with only one of these substitutions or the deletion. Taken together, these results indicate that XPA interaction with both RPA32 and RPA70 is indispensable for NER reactions.  相似文献   

6.
Replication protein A (RPA) is required for simian virus 40-directed DNA replication in vitro and for nucleotide excision repair (NER). Here we report that RPA and the human repair protein XPA specifically interact both in vitro and in vivo. Mapping of the RPA-interactive domains in XPA revealed that both of the largest subunits of RPA, RPA-70 and RPA-34, interact with XPA at distinct sites. A domain involved in mediating the interaction with RPA-70 was located between XPA residues 153 and 176. Deletion of highly conserved motifs within this region identified two mutants that were deficient in binding RPA in vitro and highly defective in NER both in vitro and in vivo. A second domain mediating the interaction with RPA-34 was identified within the first 58 residues in XPA. Deletion of this region, however, only moderately affects the complementing activity of XPA in vivo. Finally, the XPA-RPA complex is shown to have a greater affinity for damaged DNA than XPA alone. Taken together, these results indicate that the interaction between XPA and RPA is required for NER but that only the interaction with RPA-70 is essential.  相似文献   

7.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1–326 (hRPA701–326), and a fragment of the human XPA protein, residues 98–219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H–15N correlation spectrum of uniformly 15N-labeled hRPA701–326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA701–326 fragment. The hRPA701–326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA701–326 suggests that a competitive binding mechanism mediates the formation of the RPA–XPA complex. To determine whether a ternary complex could form between hRPA701–326, XPA-MBD and ssDNA, a 1H–15N correlation spectrum was acquired for uniformly 15N-labeled hRPA701–326 after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA701–326 in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA701–326 suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA701–326 may be modulated by ssDNA.  相似文献   

8.
Human XPA is an essential component in the multienzyme nucleotide excision repair (NER) pathway. The solution structure of the minimal DNA binding domain of XPA (XPA-MBD: M98-F219) was recently determined [Buchko et al. (1998) Nucleic Acids Res. 26, 2779-2788, Ikegami et al. (1998) Nat. Struct. Biol. 5, 701-706] and shown to consist of a compact zinc-binding core and a loop-rich C-terminal subdomain connected by a linker sequence. Here, the solution structure of XPA-MBD was further refined using an entirely new class of restraints based on pseudocontact shifts measured in cobalt-substituted XPA-MBD. Using this structure, the surface of XPA-MBD which interacts with DNA and a fragment of the largest subunit of replication protein A (RPA70 Delta C327: M1-Y326) was determined using chemical shift mapping. DNA binding in XPA-MBD was highly localized in the loop-rich subdomain for DNA with or without a lesion [dihydrothymidine (dhT) or 6-4-thymidine-cytidine (64TC)], or with DNA in single- or double-stranded form, indicating that the character of the lesion itself is not the driving force for XPA binding DNA. RPA70 Delta C327 was found to contact regions in both the zinc-binding and loop-rich subdomains. Some overlap of the DNA and RPA70 Delta C327 binding regions was observed in the loop-rich subdomain, indicating a possible cooperative DNA-binding mode between XPA and RPA70 Delta C327. To complement the chemical shift mapping data, the backbone dynamics of free XPA-MBD and XPA-MBD bound to DNA oligomers containing dhT or 64TC lesions were investigated using 15N NMR relaxation data. The dynamic analyses for the XPA-MBD complexes with DNA revealed localized increases and decreases in S2 and an increase in the global correlation time. Regions of XPA-MBD with the largest increases in S2 overlapped regions having the largest chemical shifts changes upon binding DNA, indicating that the loop-rich subdomain becomes more rigid upon binding DNA. Interestingly, S2 decreased for some residues in the zinc-binding core upon DNA association, indicating a possible concerted structural rearrangement on binding DNA.  相似文献   

9.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   

10.
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.  相似文献   

11.
Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.  相似文献   

12.
Human cells contain a protein that binds to UV-irradiated DNA with high affinity. This protein, damaged DNA-binding protein (DDB), is a heterodimer of two polypeptides, p127 and p48. Recent in vivo studies suggested that DDB is involved in global genome repair of cyclobutane pyrimidine dimers (CPDs), but the mechanism remains unclear. Here, we show that in vitro DDB directly stimulates the excision of CPDs but not (6-4)photoproducts. The excision activity of cell-free extracts from Chinese hamster AA8 cell line that lacks DDB activity was increased 3-4-fold by recombinant DDB heterodimer but not p127 subunit alone. Moreover, the addition of XPA or XPA + replication protein A (RPA), which themselves enhanced excision, also enhanced the excision in the presence of DDB. DDB was found to elevate the binding of XPA to damaged DNA and to make a complex with damaged DNA and XPA or XPA + RPA as judged by both electrophoretic mobility shift assays and DNase I protection assays. These results suggest that DDB assists in the recognition of CPDs by core NER factors, possibly through the efficient recruitment of XPA or XPA.RPA, and thus stimulates the excision reaction of CPDs.  相似文献   

13.
Wang M  Mahrenholz A  Lee SH 《Biochemistry》2000,39(21):6433-6439
The xeroderma pigmentosum group A complementing protein (XPA) and eukaryotic replication protein A (RPA) are among the major damage-recognition proteins involved in the early stage of nucleotide excision repair (NER). XPA and RPA are able to bind damaged DNA independently, although RPA interaction stimulates XPA binding to damaged DNA [Li, L., Lu, X., Peterson, C. A., and Legerski, R. J. (1995) Mol. Cell. Biol. 15, 5396-5402 (1); Stigger, E., Drissi, R., and Lee, S.-H. (1998) J. Biol. Chem. 273, 9337-9343 (2)]. In this study, we used surface plasmon resonance (SPR) analysis to investigate the interaction of XPA and RPA with two major types of UV-damaged DNA: the (6-4) photoproduct and the cis-syn cyclobutane dimer of thymidine. Both XPA and RPA preferentially bind to (6-4) photoproduct-containing duplex DNA over cis-syn cyclobutane dimer-containing DNA. The binding of XPA to (6-4) photoproduct was weak (K(D) = 2.13 x 10(-)(8) M), whereas RPA showed a very stable interaction with (6-4) photoproduct (K(D) = 2. 02 x 10(-)(10) M). When XPA and RPA were incubated together, the stability of the XPA-damaged DNA interaction was significantly enhanced by wild-type RPA. On the other hand, mutant RPA (RPA:p34Delta33C) defective in its interaction with XPA failed to stabilize XPA-damaged DNA complex. Taken together, our results suggest that a role for RPA in UV-damage recognition is to stabilize XPA-damaged DNA complex through protein-protein interaction.  相似文献   

14.
Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER.  相似文献   

15.
Photoactivated DNA analogs of nucleotide excision repair (NER) substrates have been created that are 48-mer duplexes containing in internal positions pyrimidine nucleotides with bulky substituents imitating lesions. Fluorochloroazidopyridyl, anthracenyl, and pyrenyl groups introduced using spacer fragments at 4N and 5C positions of dCMP and dUMP were used as model damages. The gel retardation and photo-induced affinity modification techniques were used to study the interaction of modified DNA duplexes with proteins in HeLa cell extracts containing the main components of NER protein complexes. It is shown that the extract proteins selectively bind and form covalent adducts with the model DNA. The efficiency and selectivity of protein modification depend on the structure of used DNA duplex. Apparent molecular masses of extract proteins, undergoing modification, were estimated. Mutual influence of simultaneous presence of extract proteins and recombinant NER protein factors XPC-HR23B, XPA, and RPA on interaction with the model DNA was analyzed. The extract proteins and RPA competed for interaction with photoactive DNA, mutually decreasing the yield of modification products. In this case the presence of extract proteins at particular concentrations tripled the increase in yield of covalent adducts formed by XPC. It is supposed that the XPC subunit interaction with DNA is stimulated by endogenous HR23B present in the extract. Most likely, the mutual effect of XPA and extract proteins stimulating formation of covalent adducts with model DNA is due to the interaction of XPA with endogenous RPA of the extract. A technique based on the use of specific antibodies revealed that RPA present in the extract is a modification target for photoactive DNA imitating NER substrates.  相似文献   

16.
XPA is involved in the damage recognition step of nucleotide excision repair (NER). XPA binds to other repair factors, and acts as a key element in NER complex formation. The central domain of human repair factor XPA (residues Met98 to Phe219) is responsible for the preferential binding to damaged DNA and to replication protein A (RPA). The domain consists of a zinc-containing subdomain with a compact globular structure and a C-terminal subdomain with a positively charged cleft in a novel alpha/beta structure. The resonance assignments and backbone dynamics of the central domain of human XPA were studied by multidimensional heteronuclear NMR methods. 15N relaxation data were obtained at two static magnetic fields, and analyzed by means of the model-free formalism under the assumption of isotropic or anisotropic rotational diffusion. In addition, exchange contributions were estimated by analysis of the spectral density function at zero frequency. The results show that the domain exhibits a rotational diffusion anisotropy (Dparallel/Dperpendicular) of 1.38, and that most of the flexible regions exist on the DNA binding surface in the cleft in the C-terminal subdomain. This flexibility may be involved in the interactions of XPA with various kinds of damaged DNA.  相似文献   

17.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

18.
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.  相似文献   

19.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号