首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological nitrogen (N2) fixation performed by diazotrophs (N2 fixing bacteria) is thought to be one of the main sources of plant available N in pristine ecosystems like arctic tundra. However, direct evidence of a transfer of fixed N2 to non-diazotroph associated plants is lacking to date. Here, we present results from an in situ 15N–N2 labelling study in the High Arctic. Three dominant vegetation types (organic crust composed of free-living cyanobacteria, mosses, cotton grass) were subjected to acetylene reduction assays (ARA) performed regularly throughout the growing season, as well as 15N–N2 incubations. The 15N-label was followed into the dominant N2 fixer associations, soil, soil microbial biomass and non-diazotroph associated plants three days and three weeks after labelling. Mosses contributed most to habitat N2 fixation throughout the measuring campaigns, and N2 fixation activity was highest at the beginning of the growing season in all plots. Fixed 15N–N2 became quickly (within 3 days) available to non-diazotroph associated plants in all investigated vegetation types, proving that N2 fixation is an actual source of available N in pristine ecosystems.  相似文献   

2.
Nitrogen (N) fixation in moss‐associated cyanobacteria is one of the main sources of available N for N‐limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low‐frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss‐associated N2 fixation. We therefore aimed to estimate moss‐associated N2 fixation throughout the snow‐free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high‐resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha?1) and birch litter addition plots (2.8 ± 0.2 kg N ha?1), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha?1). The control plots had intermediate rates (2.2 ± 0.2 kg N ha?1). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow‐free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss‐associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species’ litter traits.  相似文献   

3.
Dinitrogen fixation by cyanobacteria is of particular importance for the nutrient economy of cold biomes, constituting the main pathway for new N supplies to tundra ecosystems. It is prevalent in cyanobacterial colonies on bryophytes and in obligate associations within cyanolichens. Recent studies, applying interspecific variation in plant functional traits to upscale species effects on ecosystems, have all but neglected cryptogams and their association with cyanobacteria. Here we looked for species-specific patterns that determine cryptogam-mediated rates of N2 fixation in the Subarctic. We hypothesised a contrast in N2 fixation rates (1) between the structurally and physiologically different lichens and bryophytes, and (2) within bryophytes based on their respective plant functional types. Throughout the survey we supplied 15N-labelled N2 gas to quantify fixation rates for monospecific moss, liverwort and lichen turfs. We sampled fifteen species in a design that captures spatial and temporal variations during the growing season in Abisko region, Sweden. We measured N2 fixation potential of each turf in a common environment and in its field sampling site, in order to embrace both comparativeness and realism. Cyanolichens and bryophytes differed significantly in their cyanobacterial N2 fixation capacity, which was not driven by microhabitat characteristics, but rather by morphology and physiology. Cyanolichens were much more prominent fixers than bryophytes per unit dry weight, but not per unit area due to their low specific thallus weight. Mosses did not exhibit consistent differences in N2 fixation rates across species and functional types. Liverworts did not fix detectable amounts of N2. Despite the very high rates of N2 fixation associated with cyanolichens, large cover of mosses per unit area at the landscape scale compensates for their lower fixation rates, thereby probably making them the primary regional atmospheric nitrogen sink.  相似文献   

4.
Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.  相似文献   

5.
Green alder (Alnus viridis ssp. fruticosa) is a dominant understory shrub during secondary successional development of upland forests throughout interior Alaska, where it contributes substantially to the nitrogen (N) economy through atmospheric N2 fixation. Across a replicated 200+ year old vegetation chronosequence, we tested the hypotheses that green alder has strong effects on soil chemical properties, and that ecosystem-level N inputs via N2 fixation decrease with secondary successional stand development. Across early-, mid-, and late-successional stands, alder created islands of elevated soil N and carbon (C), depleted soil phosphorus (P), and more acidic soils. These effects translated to the stand-level in response to alder stem density. Although neither N2 fixation nor nodule biomass differed among stand types, increases in alder densities with successional time translated to increasing N inputs. Estimates of annual N inputs by A. viridis averaged across the upland chronosequence (6.6 ± 1.2 kg N ha?1 year?1) are substantially less than inputs during early succession by Alnus tenuifolia growing along Alaskan floodplains. However, late-succession upland forests, where densities of A. viridis are highest, may persist for centuries, depending on fire return interval. This pattern of prolonged N inputs to late successional forests contradicts established theory predicting declines in N2-fixation rates and N2-fixer abundance as stands age.  相似文献   

6.
Paradoxically, symbiotic dinitrogen (N2) fixers are abundant in nitrogen (N)‐rich, phosphorus (P)‐poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N‐rich enzymes (phosphatases) that mineralise organic P than non‐N2 fixers. We assessed soil and root phosphatase activity between fixers and non‐fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non‐fixers. Root phosphatase activity and AM colonisation were higher for fixers than non‐fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N–P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.  相似文献   

7.
Hydrogen (H2) is a by-product of the symbiotic nitrogen fixation (N2 fixation) between legumes and root-nodule bacteria (rhizobia). Some rhizobial strains have an uptake hydrogenase enzyme (commonly referred to as Hup+) that recycles H2 within the nodules. Other rhizobia, described as Hup?, do not have the enzyme and the H2 produced diffuses from the nodules into the soil where it is consumed by microorganisms. The effect of this phenomenon on the soil biota and on the soil itself, and consequent stimulation of plant growth, has been demonstrated previously. Soybeans [Glycine max (L.) Merr.] cv. Leichhardt, inoculated with either a Hup+ strain (CB1809) or one of two Hup? strains (USDA442 or USDA16) of Bradyrhizobium japonicum and uninoculated soybeans, plus a non-legume control [capsicum (Capsicum annuum L.)] were grown in the field at Ayr, North Queensland, Australia. The objectives were to examine (1) relationships between N2 fixation and H2 emission, and (2) the influence H2-induced changes in soil might have during the legume phase and/or on the performance of a following crop. Strains CB1809 and USDA442 were highly effective in N2 fixation (“good” fixers); USDA16 was partly effective (“poor” fixer). The soil had a large but non-uniformly distributed naturalised population of B. japonicum and most uninoculated control plants formed nodules that fixed some N2. These naturalised strains were classified as “poor fixers” of N2 and were Hup+. H2 emissions from nodules were assessed for all treatments when the soybean crop was 62 days old. Other parameters of symbiotic N2 fixation and plant productivity were measured when the crop was 62 and 96 days old and at crop maturity. Immediately after final harvest, the land was sown to a crop of maize (Zea mays L.) in order to determine the consequences of H2 emission from the soybean crop on maize growth. It was estimated that soybeans inoculated with USDA442, the highly effective Hup strain of B. japonicum, fixed 117 kg shoot N/ha (or about 195 kg total N/ha if the fixed N associated with roots and nodules was taken into account), and contributed about 215,000 l H2 gas per hectare to the ecosystem over the life of the crop. The volume of H2 evolved from soybeans nodulated by the Hup+ strain CB1809 was only 6% of that emitted by the USDA442 treatment, but there was no indication that soybean inoculated with USDA442 benefited from the additional H2 input. The shoot biomass, grain yield, and amounts of N fixed (105 kg shoot N/ha, 175 kg total N/ha) by the CB1809 treatment were little less than for USDA442 plants. Three days after the soybean crop was harvested, the plots were over-sown with maize along the same row lines in which the soybeans had grown. This procedure exposed the maize roots to whatever influence soybean H2 emission might have had on the soil and/or the soil microflora immediately surrounding soybean nodules. The evidence for a positive effect of soybean H2 emission on maize production was equivocal. While the consistent differences between those pre-treatments that emitted H2 and those that did not indicated a trend, only one difference (out of the 12 parameters of maize productivity that were measured) was statistically significant at P?<?0.05. The findings need substantiation by further investigation.  相似文献   

8.
In monocropped cereal systems, annual N inputs from non-fertilizer sources may be more than 30 kg ha-1. We examined the possibility that these inputs are due to biological N2 fixation (BNF) associated with roots or decomposing residues. Wheat was grown under greenhouse conditions in pots (34 cm long by 10 cm diameter) containing soil from a plot cropped to spring wheat since 1911 without fertilization. The roots and soil were sealed from the atmosphere and exposed to a15N2-enriched atmosphere for three to four weeks during vegetative, reproductive or post-reproductive stages. This technique permitted detection of as little as 1 μg fixed N plant-1 in plant material and 40 μg fixed N plant-1 in soil. No fixation of15N2 occurred during either of the first two labelling periods. In the final labelling period, straw returned to the soil was significantly enriched in15N, especially in a pot with a higher soil moisture content. Total BNF in this pot was 13 μg N plant-1, or about 30 g N ha-1. In a separate experiment with soil from the same plot, we detected BNF only when soil was amended with glucose at a high soil moisture content. Measured associative BNF was insufficient to account for observed N gains under field conditions. Lethbridge Research Centre contribution no. 3879488. Lethbridge Research Centre contribution no. 3879488.  相似文献   

9.
Patches of common juniper (Juniperus communis L.) shrubs potentially facilitate the formation of fertile islands in heath tundra ecosystems thereby influencing the long-term resilience of these ecosystems. Although the role of juniper in the formation of such ‘islands of fertility’ has been studied in semiarid landscapes, there has been little attention paid to the importance of juniper in other ecosystems. In this study we contrast the soil fertility and rates of N fixation under juniper shrubs with that in open heath tundra in northern Sweden. Plots were established at several individual sites in alpine heath tundra in Northern Sweden and mineral soils to a depth of 10 cm were characterized for available N and P and total C, N, P, Ca, Mg, K, Fe, Mn, Zn, and Cu. Nitrogen fixation rates were measured by acetylene reduction in feather mosses under juniper canopies and contrasted with N fixation in both feather mosses and surface soils in the open heath. Soils under juniper had concentrations of total P greatly in excess of P in open heath, furthermore, juniper islands had the highest concentrations of bioavailable P. Nitrogen fixation rates in the feather moss Pleurozium schreberi (Bird.) Mitt were approximately 150 μmol acetylene reduced m−2 d−1 under the juniper canopy compared to less than 10 μmol acetylene reduced m−2 d−1 in the open heath. Feather mosses under the juniper canopy also fixed N at a significantly higher rate (on an aerial basis) than that of surface cores from the open heath that included lichen, mosses, and soil crusts. Juniper facilitates the formation of islands of soil fertility that may in turn facilitate the growth of other plants and positively influence the long term recovery of heath tundra ecosystems following disturbance.  相似文献   

10.
Legume-based cropping systems have the potential to internally regulate N cycling due to the suppressive effect of soil N availability on biological nitrogen fixation. We used a gradient of endogenous soil N levels resulting from different management legacies and soil textures to investigate the effects of soil organic matter dynamics and N availability on soybean (Glycine max) N2 fixation. Soybean N2 fixation was estimated on 13 grain farm fields in central New York State by the 15N natural abundance method using a non-nodulating soybean reference. A range of soil N fractions were measured to span the continuum from labile to more recalcitrant N pools. Soybean reliance on N2 fixation ranged from 36% to 82% and total N2 fixed in aboveground biomass ranged from 40 to 224 kg N ha?1. Soil N pools were consistently inversely correlated with % N from fixation and the correlation was statistically significant for inorganic N and occluded particulate organic matter N. However, we also found that soil N uptake by N2-fixing soybeans relative to the non-nodulating isoline increased as soil N decreased, suggesting that N2 fixation increased soil N scavenging in low fertility fields. We found weak evidence for internal regulation of N2 fixation, because the inhibitory effects of soil N availability were secondary to the environmental and site characteristics, such as soil texture and corresponding soil characteristics that vary with texture, which affected soybean biomass, total N2 fixation, and net N balance.  相似文献   

11.
Cutting strategy effect on N2 fixation and distribution of fixed N above and below ground in red clover (Trifolium pratense L.) and mixed red clover/perennial ryegrass (Lolium perenne L.) green manure leys was quantified in field experiments including in situ mezotrons and microplots. Symbiotically fixed N in clover, transfer of fixed N to grass in the mixed stands and the fate of 15N contained in mulch were estimated by isotope dilution. Below ground clover-derived N was estimated by leaf labelling. Total N2 fixation was estimated by correcting fixed N in plant shoots with plant-derived N below ground and recycled N from mulch. The total N2 fixation was larger in harvested and mulched stands (average 45 g?m?2) than in the intact stands (32 g?m?2). Of the fixed N, 53% (intact), 46% (harvested) and 60% (mulched) was found below ground. The average recycling of N in mulch was 21% and contributed 13.7% (pure clover) and 2.2% (mixed) of the clover N in the regrowth. Recycling of N did not decrease N2 fixation in the mulched compared with harvested stands. The results indicate that cutting regime should be considered when estimating total amounts of N fixed by green manure leys.  相似文献   

12.
Nitrogen (N2) fixation is a major source of available N in ecosystems that receive low amounts of atmospheric N deposition. In boreal forest and subarctic tundra, the feather moss Hylocomium splendens is colonized by N2 fixing cyanobacteria that could contribute fundamentally to increase the N pool in these ecosystems. However, N2 fixation in mosses is inhibited by N input. Although this has been shown previously, the ability of N2 fixation to grow less sensitive towards repeated, increased N inputs remains unknown. Here, we tested if N2 fixation in H. splendens can recover from increased N input depending on the N load (0, 5, 20, 80, 320 kg N ha-1 yr-1) after a period of N deprivation, and if sensitivity towards increased N input can decrease after repeated N additions. Nitrogen fixation in the moss was inhibited by the highest N addition, but was promoted by adding 5 kg N ha-1 yr-1, and increased in all treatments during a short period of N deprivation. The sensitivity of N2 fixation towards repeated N additions seem to decrease in the 20 and 80 kg N additions, but increased in the highest N addition (320 kg N ha-1 yr-1). Recovery of N in leachate samples increased with increasing N loads, suggesting low retention capabilities of mosses if N input is above 5 kg N ha-1 yr-1. Our results demonstrate that the sensitivity towards repeated N additions is likely to decrease if N input does not exceed a certain threshold.  相似文献   

13.

Background and Aims

Understanding the impact of soil rhizobial populations and inoculant rhizobia in supplying sufficient nodulation is crucial to optimising N2 fixation by legume crops. This study explored the impact of different rates of inoculant rhizobia and contrasting soil rhizobia on nodulation and N2 fixation in faba bean (Vicia faba L.).

Methods

Faba beans were inoculated with one of seven rates of rhizobial inoculation, from no inoculant to 100 times the normal rate of inoculation, sown at two field sites, with or without soil rhizobia present, and their nodulation and N2 fixation assessed.

Results

At the site without soil rhizobia, inoculation increased nodule number and increased N2 fixation from 21 to 129 kg shoot N ha?1, while N2 fixation increased from 132 to 218 kg shoot N ha?1 at the site with high background soil rhizobia. At the site without soil rhizobia, inoculation increased concentrations of shoot N from 14 to 24 mg g?1, grain N from 32 to 45 mg g?1, and grain yields by 1.0 Mg (metric tonne) ha?1. Differences in nodulation influenced the contributions of fixed N to the system, which varied from the net removal of 20 kg N ha?1 from the system in the absence of rhizobia, to a net maximum input of 199 kg N ha?1 from legume shoot and root residues, after accounting for removal of N in grain harvest.

Conclusions

The impact of inoculation and soil rhizobia strongly influenced grain yield, grain N concentration and the potential contributions of legume cropping to soil N fertility. In soil with resident rhizobia, N2 fixation was improved only with the highest inoculation rate.  相似文献   

14.

Background and aims

The feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria, which fix substantial amounts of atmospheric nitrogen (N) in pristine and N-poor ecosystems. Cyanobacterial N2 fixation is inhibited by N deposition. However, the threshold of N input that leads to the inhibition of N2 fixation has not been adequately investigated. Further, the ability of N2 fixation to recover in mosses from high N deposition areas has not been studied to date.

Methods

We conducted two laboratory studies in which we (1) applied a range of concentrations of N as NH4NO3 to mosses from low N-deposition areas, and (2) we deprived mosses from a high N-deposition area of N to test their ability to recover N2 fixation.

Results

Higher addition rates (up to 10 kg N ha?1) did not systematically inhibit N2 fixation in P. schreberi. Conversely, upon weeks of N deprivation of mosses from a high N environment, N2 fixation rates increased.

Conclusions

The threshold of total N deposition above which N2 fixation in P. schreberi is inhibited is likely to be > 10 kg N ha?1. Further, cyanobacteria are able to recover from high N inputs and are able to fix atmospheric N2 after a period of N deprivation.  相似文献   

15.
We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca(15NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 102–106?cfu?g?1 plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and 15N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions.  相似文献   

16.
Nitrogen fixed in 13 provenances of Acacia albida and 11 isolines of Leucaena leucocephala inoculated with effective Rhizobium strains was measured by 15N techniques and the total N difference method. In the test soil, on the average, L. leucocephala derived about 65% of its total N from atmospheric N2 fixation compared to about 20% by A. albida. Significant differences in the percentage of N derived from atmospheric N2 (% Ndfa) occurred, between provenances or isolines within species. The % Ndfa ranged from 37 to 74% within L. leucocephala and from 6 to 37 within A. albida; (equivalent to 20–50 mg N plant–1 and 4–37 mg N plant–1 for the two species over three months, respectively) and was correlated with the nodule mass (r=0.91). The time course of N2 fixation of three selected provenances (low, intermediate and good fixers) was followed at 12 weekly intervals over a 36 week period. The % Ndfa of all provenances and isolines increased with time; and except for one of the L. leucocephala provenances, % Ndfa was similar within species at the 36 weeks harvest. There was a significant correlation between % Ndfa and the amount of N2 fixed (r=0.96). Significant interactions occurred between provenances and N treatments and often growth of uninoculated but N fertilized plants was less variable than for inoculated unfertilized plants.  相似文献   

17.
Atmospheric N2 fixed symbiotically by associations between Rhizobium spp. and legumes represents a renewable source of N for agriculture. Contribution of legume N2 fixation to the N-economy of any ecosystem is mediated by: (i) legume reliance upon N2 fixation for growth, and (ii) the total amount of legume-N accumulated. Strategies that change the numbers of effective rhizobia present in soil, reduce the inhibitory effects of soil nitrate, or influence legume biomass all have potential to alter net inputs of fixed N. A range of management options can be applied to legumes growing in farming systems to manipulate N2 fixation and improve the N benefits to agriculture and agroforestry.  相似文献   

18.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Nitrogen (N) fixation in the feather moss–cyanobacteria association represents a major N source in boreal forests which experience low levels of N deposition; however, little is known about the effects of anthropogenic N inputs on the rate of fixation of atmospheric N2 in mosses and the succeeding effects on soil nutrient concentrations and microbial community composition. We collected soil samples and moss shoots of Pleurozium schreberi at six distances along busy and remote roads in northern Sweden to assess the influence of road-derived N inputs on N2 fixation in moss, soil nutrient concentrations and microbial communities. Soil nutrients were similar between busy and remote roads; N2 fixation was higher in mosses along the remote roads than along the busy roads and increased with increasing distance from busy roads up to rates of N2 fixation similar to remote roads. Throughfall N was higher in sites adjacent to the busy roads but showed no distance effect. Soil microbial phospholipid fatty acid (PLFA) composition exhibited a weak pattern regarding road type. Concentrations of bacterial and total PLFAs decreased with increasing distance from busy roads, whereas fungal PLFAs showed no distance effect. Our results show that N2 fixation in feather mosses is highly affected by N deposition, here derived from roads in northern Sweden. Moreover, as other measured factors showed only weak differences between the road types, atmospheric N2 fixation in feather mosses represents a highly sensitive indicator for increased N loads to natural systems.  相似文献   

20.
The process of symbiotic nitrogen fixation, though of obvious advantage to legumes in situations in which nitrogen is limiting, results in substantial penalty to the host plant in terms of cost of maintenance, synthesis and nitrogen reduction. Accurate estimates of costs are difficult to obtain because of the lack of simple methods to measure N2 fixation and associated energy consumption. In relation to these difficulties, a multiple-step approach involving isotopes (14CO215N2) methodologies is described.The estimation of net respiratory cost associated with the N2 reduction activity in near-natural conditions was achieved using simultaneous14CO2 and15N2 labelling. It gives a minimum value of 2.5 mg C/mg N fixed. This value was corrected by the estimation of the amount of carbon saved through the process of CO2 fixation by the PEP carboxylase of the nodules, using14CO2 in the soil atmosphere. This gives a real respiratory cost of 4 mg C/mg N fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号