首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5′-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on l-cysteic acid and l-cysteine sulfinic acid in addition to d- and l-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. d-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.  相似文献   

2.

Objectives

To optimize the production of active inclusion bodies (IBs) containing human d-amino acid oxidase (hDAAO) in Escherichia coli.

Results

The optimized initial codon region combined with the coexpressed rare tRNAs, fusion of each of the N-terminal partners including cellulose-binding module, thioredoxin, glutathione S-transferase and expressivity tag, deletion of the incorporated linker, and improvement of tRNA abundance affected the production and activity for oxidizing d-alanine of the hDAAO in IBs. Compared with the optimized fusion constructs and expression host, IBs yields and activity were increased to 2.6- and 2.8-fold respectively by changing the N-terminal codon bias of the hDAAO. The insoluble hDAAO codon variant displayed the same substrate specificity as the soluble one for oxidizing d-alanine, d-serine and d-aspartic acid. The freshly prepared hDAAO codon variant was used for analyzing the l-serine racemization activity of the bacterially expressed maize serine racemase.

Conclusions

Optimization of the N-terminal codon bias combined with the coexpression of rare tRNAs is a novel and efficient approach to produce active IBs of the hDAAO.
  相似文献   

3.
d-Sorbitol-6-phosphate 2-dehydrogenase (S6PDH, E.C. 1.1.1.140) catalyzes the NADH-dependent conversion of d-fructose 6-phosphate (F6P) to d-sorbitol 6-phosphate (S6P). In this work, recombination and characterization of Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase are reported. Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase was expressed in P. pastoris and Arabidopsis thaliana. Enzyme assay indicated that HmS6PDH catalyzes the reduction of d-fructose 6-phosphate to d-sorbitol 6-phosphate and HmS6PDH activity was enhanced by NaCl. Furthermore, transgenic A. thaliana ectopic expressing HmS6PDH accumulate more sorbitol under salt stress. These results suggest that the ectopic expression of HmS6PDH in plants can facilitate future studies regarding the engineering and breeding of salt-tolerant crops.  相似文献   

4.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

5.
α-Amino-ε-caprolactam (ACL) racemizing activity was detected in a putative dialkylglycine decarboxylase (EC 4.1.1.64) from Citreicella sp. SE45. The encoding gene of the enzyme was cloned and transformed in Escherichia coli BL21 (DE3). The molecular mass of the enzyme was shown to be 47.4 kDa on SDS–polyacrylamide gel electrophoresis. The enzymatic properties including pH and thermal optimum and stabilities were determined. This enzyme acted on a broad range of amino acid amides, particularly unbranched amino acid amides including l-alanine amide and l-serine amide with a specific activity of 17.5 and 21.6 U/mg, respectively. The K m and V max values for d- and l-ACL were 5.3 and 2.17 mM, and 769 and 558 μmol/min.mg protein, respectively. Moreover, the turn over number (K cat) and catalytic efficiency (K cat/K m ) of purified ACL racemase from Citreicella sp. SE45 using l-ACL as a substrate were 465 S?1 and 214 S?1mM?1, respectively. The new ACL racemase from Citreicella sp. SE45 has a potential to be used as the biocatalytic application.  相似文献   

6.
Previously we have characterized a threonine dehydratase mutant TDF383V (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHASP176S, D426E, L575W (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best l-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AKA279T (encoded by lysC1) and a homoserine dehydrogenase mutant HDG378S (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AKA279T is completely resistant to feed-back inhibition by l-threonine and l-lysine, and that HDG378S is partially resistant to l-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive l-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from l-lysine (decreased by 50.1 %) to l-threonine (4.85 g/L) with minor l-isoleucine and no l-homoserine accumulation, further co-expressing ilvA1 completely depleted l-threonine and strongly shifted carbon flux from l-lysine (decreased by 83.0 %) to l-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TDF383V might be the main driving force for l-isoleucine over-synthesis in this case, and the partially feed-back resistant HDG378S might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.  相似文献   

7.
Simple and convergent synthesis of a tetra- and a trisaccharide portions of an antitumor compound Julibroside J28, isolated from Albizia julibrissin, that showed significant in vitro antitumor activity against HeLa, Bel-7402 and PC-3M-1E8 cancer cell lines is reported. The tetrasaccharide has been synthesized as its p-methoxyphenyl glycoside starting from commercially available d-glucose, l-rhamnose and l-arabinose. The trisaccharide part has been synthesized from commercially available N-acetyl d-glucosamine, d-fucose and d-xylose using simple protecting group manipulations. Sulfuric acid immobilized on silica has been used successfully as a Brönsted acid catalyst for the crucial glycosylation steps.  相似文献   

8.
A specific endo-1,3-β-d-glucanase (GFA) gene was found in genome of marine bacterium Formosa algae KMM 3553. For today this is the only characterized endo-1,3-β-d-glucanase (EC 3.2.1.39) in Formosa genus and the only bacterial EC 3.2.1.39 GH16 endo-1,3-β-d-glucanase with described transglycosylation activity. It was expressed in E. coli and isolated in homogeneous state. Investigating the products of polysaccharides digestion with GFA allowed to establish it’s substrate specificity and classify this enzyme as glucan endo-1,3-β-d-glucosidase (EC 3.2.1.39). The amino-acid sequence of GFA consists of 556 residues and shows sequence similarity of 45–85% to β-1,3-glucanases of bacteria belonging to the CAZy 16th structural family of glycoside hydrolases GH16. Enzyme has molecular weight 61 kDa, exhibits maximum of catalytic activity at 45?°C, pH 5.5. Half-life period at 45 °С is 20 min, complete inactivation happens at 55?°C within 10 min. Km for hydrolysis of laminarin is 0.388 mM. GFA glucanase from marine bacteria F. algae is one of rare enzymes capable to catalyze reactions of transglycosylation. It catalyzed transfer of glyconic part of substrate molecule on methyl-β-d-xylopyranoside, glycerol and methyl-α-d-glucopyranoside. The enzyme can be used in structure determination of β-1,3-glucans (or mixed 1,3;1,4- and 1,3;1,6-β-d-glucans) and enzymatic synthesis of new carbohydrate-containing compounds.  相似文献   

9.
The broad-specificity amino acid racemase (Bsar) from Pseudomonas putida catalyzes the racemization of various amino acids, offering a flexible and feasible platform to develop a new non-antibiotic selectable marker system for plant transformation. In the present study, we demonstrated that a Bsar variant, Bsar-R174K, that is useful as a selectable marker gene in Arabidopsis and rice that were susceptible to l-lysine and D-alanine. The introduction of wild-type Bsar, Bsar-R174K or Bsar-R174A into E. coli lysine or asparagine auxotrophs was able to rescue the growth of these microorganisms in minimal media supplemented with selectable amino acid enantiomers. The transformation of Arabidopsis with Bsar or Bsar variants based on d-alanine selection revealed that Bsar-R174K had the greatest efficiency (2.40%), superior to kanamycin selection-based transformation (1.10%). Whereas, l-lysine-based selection exhibited lower efficiency for Bsar-R174K (0.17%). The progenies of selected Bsar-R174K transgenic Arabidopsis revealed normal growth properties. In addition, Bsar-R174K transgenic rice was obtained on l-lysine medium with an efficiency of 0.9%, and the progenies of the transgenic rice revealed morphologically normal phenotypes comparable with their wild-type counterparts. This study presents the first report of broad range amino acid racemase Bsar-R174K as a non-antibiotic selectable marker system applied in transgenic plants.  相似文献   

10.
The ADP-l-glycero-β-d-manno-heptose and the GDP-6-deoxy-α-d-manno-heptose biosynthesis pathways play important roles in constructing lipopolysaccharide of Gram-negative bacteria. Blocking the pathways is lethal or increases antibiotic susceptibility to pathogens. Therefore, the enzymes involved in the pathways are novel antibiotic drug targets. Here, we designed an efficient method to assay the whole enzymes in the pathways using mass spectrometry and screened 148 compounds. One promising lead is (?)-nyasol targeting d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase (HddC) included in the GDP-6-deoxy-α-d-manno-heptose biosynthesis pathway from Burkholderia pseudomallei. The inhibitory activity of the lead compound against HddC has been confirmed by blocking the system transferring the guanosine monophosphate (GMP) moiety to α-d-glucose-1-phosphate. (?)-Nyasol exhibits the half maximal inhibitory concentration (IC50) value of 17.6 μM. A further study is going on using (?)-nyasol derivatives to find better leads with high affinity.  相似文献   

11.
12.
The following genera are redefined:Albatrellus S. F. Gray,Heterobasidion Bref.,Haploporus Bond. et Sing. ex Sing.,Fomitopsis P. Karst. andRigidoporus Murrill two new subgenera are described:Polyporus subgen.Dendropolyporus Pouz. (type:Polyporus umbellatus) andRigidoporus subgen.Neooxyporus Pouz. (type:Polyporus latemarginatus); the genusOxyporus (Bourd. etGalz.)Donk is classified as a subgenus of the genusRigidoporus,Murrill and the generaBjerkandera P. Karst. andLeptoporus quél. are classified as subgenera of the genusTyromyces P. Karst. The new subfamilyAlbatrelloideae Pouz. (genera:Albatrellus andGrifola) is described and 14 new specific combinations are made. The new genusIrpicodon Pouz. (type:Irpex pendulus) is proposed.  相似文献   

13.
The accumulation of soluble carbohydrates in maturing diaspores of flowering plants comprising Arctic populations of Cerastium alpinum, indigenous Antarctic species Colobanthus quitensis and Deschampsia antarctica, and cosmopolitan Poa annua from the Antarctic was investigated. For comparative purposes, the diaspores of two species of flowering plants growing in the area of Olsztyn (Poland), Poa annua (Poaceae) and Cerastium arvense (Caryophyllaceae) were used. A qualitative and quantitative analysis of soluble carbohydrates conducted by means of high-resolution gas chromatography showed that monosaccharides (glucose and fructose), maltose and sucrose, raffinose, myo-inositol and galactinol are ubiquitous in developing and mature diaspores among investigated species. Moreover, D. antarctica and P. annua caryopses additionally contained stachyose and 1-kestose; the seeds of Caryophyllaceae studied were found to contain d-pinitol and d-ononitol. The development and maturation of the seeds of polar Caryophyllaceae and Poaceae were accompanied by the changes in the concentration of their soluble carbohydrates. During maturation, seeds accumulated galactinol and raffinose family of oligosaccharides (RFOs), except C. quitensis. Although seeds of the studied Caryophyllaceae contained d-pinitol and lower amounts of d-ononitol, they did not accumulate α-d-galactoside derivatives of mentioned cyclitols. P. annua caryopses, occurring in the Antarctic, were found to accumulate considerably higher amounts of sucrose and 1-kestose than those developed in Olsztyn.  相似文献   

14.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

15.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

16.
Flow cytometry was used to determine ploidy levels in the Czech and Slovak taxa of the genusPseudolysimachion (W.D.J. Koch)Opiz (=Veronica auct. p.p.,Scrophulariaceae). In total, 123 populations from the Czech Republic, Slovakia, Ukraine (one locality), Austria (one locality) and Hungary (one locality) were analyzed. InP. maritimum (L.)Á. Löve etD. Löve andP. spicatum (L.)Opiz, two cytotypes were found: diploid (2n=2x=34) and tetraploid (2n=4x=68). In both species the tetraploid cytotype predominated (P. maritimum: 41 tetraploid populations out of 45;P. spicatum: 57 tetraploid populations out of 58). The two cytotypes ofP. maritimum have no taxonomic significance because ploidy level is not obviously correlated with morphology, distribution pattern or ecology. Tetraploid populations ofP. spicatum belong to two morphologically different subspecies, subsp.spicatum and subsp.fischeri Trávní?ek. The diploid cytotype (one population only) should be provisionally classified as a third subspecies ofP. spicatum, which is morphologically similar to the Asian subsp.porphyrianum (Pavlov)Trávní?ek. Only diploid plants (2n=2x=34) ofP. orchideum (Crantz)Wraber were found; all 13 populations that were analyzed belong toP. orchideum s.str. One diploid population sample ofP. spurium subsp.foliosum (Waldst. etKit.)Holub (2n=2x=34) and one tetraploid sample ofP. incanum subsp.pallens (Host)Trávní?ek (2n=4x=68) were also analyzed. In addition, three tetraploid populations of hybrid origin were investigated:P. maritimum ×P. spicatum subsp.spicatum (one population) andP. maritimum ×P. spurium subsp.foliosum (two populations). While hybrid plants ofP. maritimum ×P. spicatum arose from tetraploid parental species, plants ofP. maritimum ×P. spurium probably resulted from a cross between tetraploidP. maritimum and diploidP. spurium. The putative origin and evolutionary importance of polyploids in thePseudolysimachion are discussed.  相似文献   

17.
d-Psicose 3-epimerase (DPEase) converts d-fructose into d-psicose which exists in nature in limited quantities and has key physiological functions. In this study, RDPE (DPEase from Ruminococcus sp. 5_1_39BFAA) was successfully constitutively expressed in Bacillus subtilis, which is the first report of its kind. Three sugar-inducible promoters were compared, and the xylose-inducible promoter P xylA was proved to be the most efficient for RDPE production. Based on the analysis of the inducer concentration and RDPE expression, we surmised that there was an extremely close correlation between the intracellular RDPE expression and xylose accumulation level. Subsequently, after the metabolic pathway of xylose was blocked by deletion of xylAB, the intra- and extra-cellular RDPE expression was significantly enhanced. Meanwhile, the optimal xylose induction concentration was reduced from 4.0 to 0.5 %. Eventually, the secretion level of RDPE reached 95 U/mL and 2.6 g/L in a 7.5-L fermentor with the fed-batch fermentation, which is the highest production of DPEase by a microbe to date.  相似文献   

18.
In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα–Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+(l-Trp)(d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+(d-Trp)(d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C–C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.  相似文献   

19.
Members of the genus Caldicellulosiruptor are the most thermophilic cellulolytic bacteria so far described and are capable of efficiently utilizing complex lignocellulosic biomass without conventional pretreatment. Previous studies have shown that accumulation of high concentrations of cellobiose and, to a lesser extent, cellotriose, inhibits cellulase activity both in vivo and in vitro and high concentrations of cellobiose are present in C. bescii fermentations after 90 h of incubation. For some cellulolytic microorganisms, β-d-glucosidase is essential for the efficient utilization of cellobiose as a carbon source and is an essential enzyme in commercial preparations for efficient deconstruction of plant biomass. In spite of its ability to grow efficiently on crystalline cellulose, no extracellular β-d-glucosidase or its GH1 catalytic domain could be identified in the C. bescii genome. To investigate whether the addition of a secreted β-d-glucosidase would improve growth and cellulose utilization by C. bescii, we cloned and expressed a thermostable β-d-glucosidase from Acidothermus cellulolyticus (Acel_0133) in C. bescii using the CelA signal sequence for protein export. The effect of this addition was modest, suggesting that β-d-glucosidase is not rate limiting for cellulose deconstruction and utilization by C. bescii.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号