首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xuesha Ke  Wei Li 《Hydrobiologia》2006,556(1):357-362
Due to eutrophication submerged macrophytes have disappeared from many Chinese lakes. This is unfortunate as submerged macrophytes are important to improve water quality, and its re-establishment is therefore desirable. For this purpose a potential method to use is re-seeding, this being particularly attractive due to the high seed productivity of V. natans. We conducted laboratory studies to investigate the effects of five environmental variables (temperature, substratum, oxygen, light availability, and burial depth) on the seed germination of V. natans. Our results showed that a wide temperature range (25–35 °C) was favorable for germination; that seeds germinated well under both gravel and silt; that anaerobic condition proved to accelerate seed germination although the final germination percentage did not rise; and that light and burial acted as limiting factors. These results suggest that V. natans is a potential candidate for successful restoration of vegetation in lakes recovering from eutrophication.  相似文献   

3.
Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster''s Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster''s Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality and trophic structure when managing restoration of salt ponds.  相似文献   

4.
Some shallow lakes switch repeatedly back and forth between a vegetation dominated clear-water state and a contrasting turbid state. Usually such alternations occur quite irregularly, but in some cases the switches between states are remarkably regular. Here we use data from a well-studied Dutch lake and a set of simple models to explore possible explanations for such cyclic behavior. We first demonstrate from a graphical model that cycles may in theory occur if submerged macrophytes promote water clarity in the short run, but simultaneously cause an increased nutrient retention, implying an accumulation of nutrients in the long run. Thus, although submerged plants create a positive feedback on their own growth by clearing the water, they may in the long run undermine their position by creating a slow “internal eutrophication”. We explore the potential role of two different mechanisms that may play a role in this internal eutrophication process using simulation models: (1) reduction of the P concentration in the water column by macrophytes, leading to less outflow of P, and hence to a higher phosphorus accumulation in the lake sediments and (2) a build-up of organic matter over time resulting in an increased sediment oxygen demand causing anaerobic conditions that boost P release from the sediment. Although the models showed that both mechanisms can produce cyclic behavior, the period of the cycles caused by the build-up of organic material seemed more realistic compared to data of the Dutch Lake Botshol in which regular cycles with a period of approximately 7 years have been observed over the past 17 years.  相似文献   

5.
As the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g. lake trophic state), the ecological impacts of food web changes are far less understood. We analyzed Wabash River fish assemblage data collected from 1974-2008, to evaluate temporal variation in body-size structure and functional group composition. Two parameters derived from annual community size-spectra were our major response variables: (1) the regression slope is an index of ecological efficiency and predator-prey biomass ratios, and (2) spectral elevation (regression midpoint height) is a proxy for food web capacity. We detected a large assemblage shift, over at least a seven year period, defined by dramatic changes in abundance (measured as catch-per-unit-effort) of the dominant functional feeding groups among two time periods; from an assemblage dominated by planktivore-omnivores to benthic invertivores. There was a concurrent increase in ecological efficiency (slopes increased over time) following the shift associated with an increase in large-bodied low trophic level fish. Food web capacity remained relatively stable with no clear temporal trends. Thus, increased ecological efficiency occurred simultaneous to a compensatory response that shifted biomass among functional feeding groups.  相似文献   

6.
The occurrence of bottom-water hypoxia is increasing in bodies of water around the world. Hypoxia is of concern due to the way it negatively impacts lakes and estuaries at the whole ecosystem level. During 2015, we examined the influence of hypoxia on the Muskegon Lake ecosystem by collecting surface- and bottom-water nutrient samples, bacterial abundance counts, benthic fish community information, and performing profiles of chlorophyll and phycocyanin as proxies for phytoplankton and cyanobacterial growth, respectively. Several significant changes occurred in the bottom waters of the Muskegon Lake ecosystem as a result of hypoxia. Lake-wide concentrations of soluble reactive phosphorus (SRP) and total phosphorus increased with decreasing dissolved oxygen (DO). Bacterial abundance was significantly lower when DO was less than 2.2 mg L?1. Whereas there were no drastic changes in surface chlorophyll a concentration through the season, phycocyanin increased threefold during and following a series of major wind-mixing events. Phycocyanin remained elevated for over 1.5 months despite several strong wind events, suggesting that high SRP concentrations in the bottom waters may have mixed into the surface waters, sustaining the bloom. The fish assemblage in the hypolimnion also changed in association with hypoxia. Overall fish abundance, number of species, and maximum length all decreased in catch as a function of bottom DO concentrations. The link between hypoxia and wind events appears to serve as a positive feedback loop by continuing internal loading and cyanobacterial blooms in the lake, while simultaneously eroding habitat quality for benthic fish.  相似文献   

7.
Efforts to restore fish communities of the Kissimmee River will require carefully defined criteria for assessing success. A goal of regaining communities mirroring those in the historical river may not be an appropriate target because the ecological conditions of the river before channelization are poorly known. The Kissimmee River is in a biogeographic region historically low in fish diversity, and no comparable rivers in that region remain substantially unaltered by human activity to permit their use as reference sites indicative of conditions in the Kissimmee before channelization. I propose alternative criteria for assessing restoration success emphasizing expectations for ecosystem function in similar floodplain rivers. Assessing ecosystem function will be less simple than assessing criteria such as fish condition or density of selected species. But criteria based solely on fish-population characteristics cannot be justified quantitatively. Information integrated from several levels of biotic organization (individuals, populations, communities, and systems) should be drawn upon in making conclusions about restoration success. I develop a conceptual model to outline aspects of ecosystem function that could serve as a basis for evaluation of the restoration of fish communities of the Kissimmee River. The model focuses on the dynamics of the flux of floodplain-channel nutrients and the movement of larvae, juvenile, and adult fishes and macroinvertebrates. The present community may be dominated more by species tolerant of low-oxygen conditions, such as gar and bowfin, than the restored community will be. I propose that nest sites may be the limiting recruitment success of substrate spawning species in the channelized river and that these species, including sunfish and large-mouth bass, will increase in abundance after restoration. Also, species relying on floodplain habitats, including sun-fish species, darters, and some minnows, may also increase in frequency with restoration of floodplain-channel hydro-logical conditions and habitats. The observation that no species are known to have disappeared from the Kissimmee River, and its relatively simple community structure compared to rivers of comparable size elsewhere, are encouraging for prospects of successful restoration.  相似文献   

8.
Degraded Softwater Lakes: Possibilities for Restoration   总被引:5,自引:0,他引:5  
In the Netherlands, the characteristic flora of shallow softwater lakes has declined rapidly as a consequence of eutrophication, alkalization and acidification. The sediment of most lakes has become nutrient rich and anaerobic. We expected that, if a vital seed bank was still present, restoration of the original water quality and sediment conditions would lead to the return of softwater macrophytes. The restoration of 15 degraded, shallow, softwater lakes in the Netherlands was monitored from 1983 to 1998. In eutrophied as well as in acidified lakes, removal of accumulated organic matter from the sediment and shores was followed by rapid recolonization of softwater macrophytes present in the seedbank. After isolation from alkaline water and subsequent mud removal, this recovery was also observed in alkalized lakes. Further development of softwater vegetation correlated strongly with the water quality. When renewed eutrophication was successfully prevented, softwater macrophytes could expand. However, in acidified lakes, Juncus bulbosus and Sphagnum species became dominant after restoration. Liming of an acidified lake was followed by re‐acidification within 3 years. Recolonization by softwater macrophytes was inhibited by high turbidity of the water column and spreading of large helophytes on the shore. As an alternative, controlled inlet of alkaline, nutrient‐poor groundwater was studied in a few lakes. The pH of those lakes increased, the carbon and nitrogen availability decreased and softwater macrophytes returned. Successful restoration has contributed considerably to maintaining biodiversity in softwater lakes in the Netherlands.  相似文献   

9.
Here we report the long-term (13-year) dynamics of surface pCO2 and its response to episodic eutrophication and acidification events in two contrasting tropical coastal lakes, one clear-water and the other humic. A short-term nutrient addition experiment was also conducted in mesocosms in the humic lake where in situ eutrophication was moderate. Our objective was to elucidate the response of pCO2 to interannual changes in key limnological conditions, such as nutrient concentrations and pH. The humic waters showed a median pCO2 almost ninefold higher across the 13-year study than the clear waters, supporting pCO2 values about tenfold above atmospheric equilibrium. Eutrophication of the clear-water lake resulted in a decrease in pCO2 to median values below atmospheric equilibrium, producing a strong sink for atmospheric CO2. In contrast, pCO2 increased by over tenfold in both lakes during the acidification phase, resulting in very large CO2 emissions to the atmosphere. Experimental nutrient additions in the humic lake showed a strong persistence of high pCO2. The extreme variability in pCO2 observed here might be a characteristic of tropical lakes and may have important consequences for regional carbon budgets.  相似文献   

10.
The trophic structure of benthic macroinvertebrate communities in lakes varying in salinity levels (from oligohaline to hyperhaline) in the southern Ob–Irtysh interfluve has been investigated. Four trophic groups of macroinvertebrates have been identified in 48 lakes: (1) predators, (2) grinders, (3) scrapers, and (4) collectors–detritophages and facultative filter feeders. It is found that the proportion of different trophic groups in taxonomic composition and biomass of macroinvertebrate communities changes with increasing water salinity in lakes.  相似文献   

11.
We explored the relationships between Secchi disc depth and the abundance of fish species in very shallow, hypertrophic, turbid waters of Pampa Plain lakes, Argentine. We tested whether the abundance of any of the species present was associated with water transparency for lakes where water transparency, as measured by Secchi disc depth, ranged from 0.1 to 0.4 m. Overall, the abundance of five species (Cnesterodon decemmaculatus, Jenynsia multidentata, Corydoras paleatus, Pimelodella laticeps and Odontesthes bonariensis) seemed to be affected by this narrow gradient in water transparency. These findings represent an interesting result for turbid hypertrophic environments where narrow ranges in water transparency are traditionally neglected as important factors for fishes. We show, however, how water transparency patterns may be still important for some species in highly turbid waters with extremely narrow gradients in Secchi disc depth. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Extensive watershed development has resulted in excessive total phosphorus (TP) loads to Dal Lake, a high altitude Himalayan lake known for its tourism and economic potential. External and internal TP loads of 5 and ∼1 g m–2 yr–1, respectively, were estimated for the lake. These loading rates are high in relation to the lake's critical tolerance range of 0.1–0.2 g m–2 yr–1, and, over time, have resulted in severe eutrophication in view of extremely high macrophyte biomass (average = 3.2 kg m–2‐fresh weight) and bottom sediment enrichment (79 tons of TP reserves which contribute 88% of the annual TP budget). This study emphasizes the importance of external TP load reduction as a primary management objective to counteract internal TP loading and P storage within bottom sediments resulting from historic anthropogenic loads. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Many shallow softwater lakes are being affected by eutrophication and acidification. In these small lakes decaying organic material usually accumulates and characteristic plant and animal species disappear. In many degraded lakes organic matter and macrophytes are being removed in order to restore the lakes to their original state. To assess the effects of restoration management in softwater lakes on aquatic macroinvertebrates, changes in the species assemblages were studied in four degraded lakes in the Netherlands undergoing restoration measures. The degraded lakes still harboured species characteristic of pristine softwaters. However, most of these species were not recorded after restoration measures were taken. Species’ densities declined dramatically during the execution of restoration measures. Swimming and abundant species were more likely to survive the restoration measures than other species. The first years after restoration, the lakes did not meet the habitat requirements for a number of species. Species requiring vegetation for ovipositioning, animal food sources and swards of vegetation as habitat declined. Because recolonization is expected to be restricted, it is recommended to ensure the survival of relict populations when taking measures to restore degraded softwater lakes. This may be achieved by phasing restoration measures in space and time, hereby minimizing mortality during the execution of restoration measures and by preserving habitat conditions required by characteristic species.  相似文献   

14.
15.
In South America, 94% of dry‐temperate lands present some degree of environmental degradation, highlighting the need for ecological restoration. We analyzed geographic patterns of genetic variation in Austrocedrus chilensis, a dominant conifer of the steppe‐forest ecotone in the eastern Andes, to examine its potential for restoration. We sampled 67 locations in Argentina and estimated genetic parameters to determine the effects of historical factors affecting diversity, together with inbreeding and gene flow, using 12 allozyme loci. Genetic diversity decreased southwards in eastern populations, which are marginal for the range of the species and patchily distributed, while high genetic admixture was detected in continuous western populations, possibly reflecting postglacial migrations from northern and eastern sources. Higher inbreeding (FIS > 0.14) was recorded in northern compared with southern populations, attributed to the impact of recent bottlenecks resulting from anthropogenic fires. Gene flow was found to be moderate overall (FST = 0.12). The implications of these results for restoration actions focusing on Austrocedrus were explored. Relatively small, inbred yet genetically diverse northern populations should be the subject of passive restoration efforts, while experimental common gardens should be established toward the south, to support active restoration approaches. This illustrates how ahead of time information on patterns of genetic variation can support restoration efforts for dryland tree species.  相似文献   

16.
17.
The Sudbury, Ontario, Canada area offers a unique opportunity to develop our understanding of biotic and abiotic lake recovery processes in industrially damaged natural systems. In recent decades, lakes in the Sudbury area have shown improvements in water quality due to decreases in sulfur (S) and metal emissions from area smelters, and reduced acid deposition from more distant sources. However, biological recovery is lagging and mechanisms controlling the lag are not yet clear. Our study examines the roles of two factors, residual metal contamination and altered fish predation, on zooplankton community recovery. Data collected over three decades on six study lakes were analyzed using redundancy analysis (RDA) and partial RDA's to assess historical and present relationships of water chemistry and fish abundance with zooplankton community recovery. Continuing metal toxicity appears to be the primary cause of the absence of some zooplankton species, particularly Daphnia spp. from metal‐contaminated lakes. Conversely, once water quality is suitable and abundant planktivores reestablish, fish planktivory becomes a factor affecting Daphnia spp. establishment. The introduction of piscivores into these lakes may be necessary to facilitate the return of many Daphnia species. Further reductions in metal toxicity will also assist with the complete recovery of zooplankton communities. Studying natural systems over several decades allows us to better understand the intricate steps involved with recovery of industrially damaged lakes, and this knowledge will greatly benefit future restoration efforts in other industrially damaged systems .  相似文献   

18.
The fish community and habitat structure in the littoral zone of lakes Pedra and Hortência, middle Rio Doce Valley, Brazil, were investigated in three sampling periods from August 1992 to May 1993. A total of 9106 fishes were collected, including 11 species in Lake Hortência and 12 species in Lake Pedra. Diversity was higher in Lake Hortência, although total fish abundance was the same for both lakes, with no significant temporal differences. The length distribution of the majority of fish species was similar between lakes. Geophagus brasiliensis was the dominant species (number/biomass) in all habitats of the two lakes in all three sampling periods. A striking difference in total fish abundance in relation to habitat types, which we attribute to physical variables, especially the abundance of macrophytes was observed. Negative impacts attributable to the local Eucalyptus sp. plantations were not detected in the fish community structure of Lake Hortência, which is probably due to the maintenance of the riparian vegetation contributing to similar physical environmental conditions in the littoral zone and high similarity in fish community structure between the two lakes. However, further studies on fish community structure and potential Eucalyptus impacts are suggested as necessary to improve conservation measures of the lakes and their fish faunas.  相似文献   

19.
The field of ecological restoration is growing rapidly, and the sourcing of suitable seed is a major issue. Information on the population genetic structure of a species can provide valuable information to aid in defining seed collection zones. For a practical contribution from genetics, a rapid approach to delineating seed collection zones using genetic markers (amplified fragment length polymorphisms [AFLPs]) has been developed. Here, we test the effects of sampling regime on the efficacy of this method. Genetic data were collected for an outcrossing seeder, Daviesia divaricata ssp. divaricata, an important species in urban bushland restoration in Perth, Western Australia. The effect of sample size and number of AFLP markers on estimates of genetic variation and population structure was examined in relation to implications for sourcing material for restoration. Three different sample sizes were used (n= 8, 15, and 30) from six urban bushland remnants. High levels of genetic diversity were observed in D. divaricata (87.4% polymorphic markers), with significant population differentiation detected among sampled populations (ΘB= 0.1386, p < 0.001). Although sample size does not appear to affect the spatial pattern in principle co‐ordinates analysis (PCA) plots, the number of polymorphic loci increased with sample size and estimates of population subdivision (FST and ΘB) and associated confidence intervals decreased with increasing sample size. We recommend using a minimum of 30 plants for sourcing seed for restoration projects.  相似文献   

20.
Declining fish health and the occurrence of large fish kills are some of the more publicly meaningful indicators of water quality in the impaired Neuse River Estuary, North Carolina. It is generally believed that such problems are caused by the widespread depletion of dissolved oxygen—an indirect result of anthropogenic nutrient pollution. However, the development of scientific simulation models to predict how improvements in oxygen conditions will improve the health of fish and reduce the frequency of fish kills has proven elusive. As a pragmatic solution to this problem, the expert opinion of estuarine fisheries scientists in possession of relevant data and experience was elicited. The relations between joint and conditional probabilities were exploited to translate quantities that are normally hard to assess into quantities that can be drawn more directly from the experiential knowledge of the experts. A combined model of expert opinion was constructed as an influence diagram, and Monte Carlo simulation was used to generate predictions of fish health and fish kills in the Neuse River Estuary under current and improved oxygen conditions. Full model results are expressed as probability distributions, capturing the effects of natural variability and knowledge uncertainty—both contributors to total ecological risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号