首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
Intestinal microflora influences many essential metabolic functions, and is receiving increasing attention from the scientific community. However, information on intestinal microbiota, especially for large wild carnivores, is insufficient. In the present study, the bacterial community in the feces of snow leopards (Uncia uncia) was described based on 16S rRNA gene sequence analysis. A total of 339 near-full-length 16S rRNA gene sequences representing 46 non-redundant bacterial phylotypes (operational taxonomical units, OTUs) were identified in fecal samples from four healthy snow leopards. Four different bacterial phyla were identified: Firmicutes (56.5 %), Actinobacteria (17.5 %), Bacteroidetes (13 %), and Proteobacteria (13 %). The phylum Actinobacteria was the most abundant lineage, with 40.4 % of all identified clones, but Clostridiales, with 50 % of all OTUs, was the most diverse bacterial order. The order Clostridiales was affiliated with four families: Clostridiaceae I, Lachnospiraceae, Peptostreptococcaceae, and Ruminococcaceae. Lachnospiraceae was the most diverse family with 17 OTUs identified. These findings were basically consistent with previous reports on the bacterial diversity in feces from other mammals.  相似文献   

2.
The microbiome in the rhizosphere–the region surrounding plant roots–plays a key role in plant growth and health, enhancing nutrient availability and protecting plants from biotic and abiotic stresses. To assess bacterial diversity in the tomato rhizosphere, we performed two contrasting approaches: culture-dependent and -independent. In the culture-dependent approach, two culture media (Reasoner’s 2A agar and soil extract agar) were supplemented with 12 antibiotics for isolating diverse bacteria from the tomato rhizosphere by inhibiting predominant bacteria. A total of 689 bacterial isolates were clustered into 164 operational taxonomic units (OTUs) at 97% sequence similarity, and these were found to belong to five bacterial phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes). Of these, 122 OTUs were retrieved from the antibiotic-containing media, and 80 OTUs were recovered by one specific antibiotic-containing medium. In the culture-independent approach, we conducted Illumina MiSeq amplicon sequencing of the 16S rRNA gene and obtained 19,215 high-quality sequences, which clustered into 478 OTUs belonging to 16 phyla. Among the total OTUs from the MiSeq dataset, 22% were recovered in the culture collection, whereas 41% of OTUs in the culture collection were not captured by MiSeq sequencing. These results showed that antibiotics were effective in isolating various taxa that were not readily isolated on antibiotic-free media, and that both contrasting approaches provided complementary information to characterize bacterial diversity in the tomato rhizosphere.  相似文献   

3.
Bacterial communities in anode microbial fuel cells (MFC) obtained from anaerobic digester sludge in a municipal wastewater treatment plant (Nanjing, China) were investigated. Glucose, propyl alcohol and methanol were used as sole carbon source in two-chamber MFC. The results showed that a reproducible cycle of power production can be formed in MFC fed with 3 substrates and glucose-fed MFC had the highest peak power density of 1499 ± 33 mW/m3, followed by methanol- (1264 ± 47 mW/m3) and propyl alcohol-fed MFC (1192 ± 36 mW/m3). Firmicutes, Bacteroidetes, Verrucomicrobia, Proteobacteria, Synergistetes and Armatimonadetes were dominant phyla in 3 MFC. Firmicutes was the most dominant phylum in glucose-fed MFC samples and Bacteroidetes prevailed in methanol- and propyl alcohol-fed MFC. These data indicate that propyl alcohol and methanol along with glucose can be used as substrates of MFC.  相似文献   

4.
Bacterial diversity in a seawater recirculating aquaculture system (RAS) was investigated using 16S rRNA amplicon sequencing to understand the roles of bacterial communities in the system. The RAS was operated at nine different combinations of temperature (15°C, 20°C, and 25°C) and salinity (20‰, 25‰, and 32.5‰). Samples were collected from five or six RAS tanks (biofilters) for each condition. Fifty samples were analyzed. Proteobacteria and Bacteroidetes were most common (sum of both phyla: 67.2% to 99.4%) and were inversely proportional to each other. Bacteria that were present at an average of ≥ 1% included Actinobacteria (2.9%) Planctomycetes (2.0%), Nitrospirae (1.5%), and Acidobacteria (1.0%); they were preferentially present in packed bed biofilters, mesh biofilters, and maturation biofilters. The three biofilters showed higher diversity than other RAS tanks (aerated biofilters, floating bed biofilters, and fish tanks) from phylum to operational taxonomic unit (OTU) level. Samples were clustered into several groups based on the bacterial communities. Major taxonomic groups related to family Rhodobacteraceae and Flavobacteriaceae were distributed widely in the samples. Several taxonomic groups like [Saprospiraceae], Cytophagaceae, Octadecabacter, and Marivita showed a cluster-oriented distribution. Phaeobacter and Sediminicola-related reads were detected frequently and abundantly at low temperature. Nitrifying bacteria were detected frequently and abundantly in the three biofilters. Phylogenetic analysis of the nitrifying bacteria showed several similar OTUs were observed widely through the biofilters. The diverse bacterial communities and the minor taxonomic groups, except for Proteobacteria and Bacteroidetes, seemed to play important roles and seemed necessary for nitrifying activity in the RAS, especially in packed bed biofilters, mesh biofilters, and maturation biofilters.  相似文献   

5.
This study addresses the biodiversity profile of bacterial community in the intestinal lumen and mucosa of snow trout fish by applying 16S rRNA gene 454-pyrosequencing. A total of 209,106 sequences with average length 689 (±53) were filtered, denoised, trimmed, and then sorted into OTUs based on 97 % sequence similarity using the USEARCH software pipeline. Bacteria representing 10 phyla were found in the samples investigated. Fimicutes ribotypes were present in intestinal-mucosa and lumen in all fish and often dominated the libraries (average 43 and 38 %, respectively). Proteobacteria were also prevalent, but at a lower relative abundance, at 22 and 29 % in mucosa and lumen, respectively. The autochthonous microbiota was dominated by sequences belonging to the Bacilli (mean sequence abundance 24 %), in particular the Lactobacillaceae, with Lactobacillus and Pediococcous being the most abundant genera. Fewer Bacilli (mean sequence abundance 22 %) and Actinobacteria (2 %) were present in the lumen, and allochthonous communities consisted of a more even split among the bacterial classes, with increases in sequences assigned to members of the γ-Proteobacteria (16 %) and Fusobacteriia (8 %). The principal bacterial genera recorded in the lumen belonged to the lactic acid bacteria group, Cetobacterium, Clostridium and Synechococcus. Results obtained suggest that the lumen and mucosal layer of the snow trout intestine may host different microbial communities. Moreover, both regions harbour a diverse microbiome with a greater microbial diversity in the intestinal mucus compared with the luminal communities of the fish. Many of these microbes might be of high physiological relevance for the fish and may play key roles in the functioning of its gut.  相似文献   

6.
Microbial diversity in the sediments of the Kara Sea shelf and the southern Yenisei Bay, differing in pore water mineralization, was studied using massive parallel pyrosequencing according to the 454 (Roche) technology. Members of the same phyla (Cyanobacteria, Verrucomicrobia, Actinobacteria, Proteobacteria, and Bacteroidetes) predominated in bacterial communities of the sediments, while their ratio and taxonomic composition varied within the phyla and depended on pore water mineralization. Increasing salinity gradient was found to coincide with increased share of the γ-Proteobacteria and decreased abundance of α- and β-Proteobacteria, as well as of the phyla Verrucomicrobia, Chloroflexi, Chlorobi, and Acidobacteria. Archaeal diversity was lower, with Thaumarchaeota predominant in the sediments with high and low mineralization, while Crenarchaeota predominated in moderately mineralized sediments. Microbial communities of the Kara Sea shelf and Yenisei Bay sediments were found to contain the organisms capable of utilization of a broad spectrum of carbon sources, including gaseous and petroleum hydrocarbons.  相似文献   

7.
Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Ålesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 × 103–1.3 × 104 cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Ålesund also was very similar (0.6 × 104 and 3.4 × 104, respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4–37°C), in their tolerance to NaCl (0.3–2 M NaCl) and growth pH range (2–11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20°C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5°C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.  相似文献   

8.
Massive parallel sequencing (the Roche 454 platform) of the 16S rRNA gene fragments was used to investigate microbial diversity in the sediments of the Posolsk Bank cold methane seep. Bacterial communities from all sediment horizons were found to contain members of the phyla Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes, Nitrospirae, Chloroflexi, Proteobacteria, and the candidate phyla Aminicenantes (OP8) and Atribacteria (OP9). Among Bacteria, members of the Chloroflexi and Proteobacteria were the most numerous (42 and 46%, respectively). Among archaea, the Thaumarchaeota predominated in the upper sediment layer (40.1%), while Bathyarchaeota (54.2%) and Euryarchaeota (95%) were predominant at 70 and 140 cm, respectively. Specific migration pathways of fluid flows circulating in the zone of gas hydrate stability (400 m) may be responsible for considerable numbers of the sequences of Chloroflexi, Acidobacteria, and the candidate phyla Aminicenantes and Atribacteria in the upper sediment layers and of the Deinococcus-Thermus phylum in deep bottom sediments.  相似文献   

9.
Taxonomic diversity of Lake Baikal bacteria during the period of massive under-ice development of dinoflagellate Gymnodinium baicalense was studied. During the ice-covered period in 2013, both the abundance and biomass of G. baicalense were several orders of magnitude higher than the values for previous years, the maximum values were 8.9 × 106 cells/L and 405 g/m3, respectively. The taxonomic structure of bacterial communities was determined using the data obtained by 454 pyrosequencing (Roche) with Mothur 1.19.0. Predominance of three phyla was revealed: Bacteroidetes, Proteobacteria, and Actinobacteria. Massive dinoflagellate development resulted in a considerable decrease in the richness and diversity of bacterial communities compared to the results of the earlier long-term studies.  相似文献   

10.
Taxonomic compositions of epiphytic bacterial communities in water areas differing in levels of oil pollution were revealed. In total, 82 bacterial genera belonging to 16 classes and 11 phyla were detected. All detected representatives of epiphytic bacterial communities belonged to the phyla Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria, Verrucomicrobia, Acidobacteria, Cyanobacteria, Firmicutes, and Fusobacteria and candidate division TM7. The ratio of the phyla in the communities varied depending on the levels of oil pollution. New data on taxonomic composition of uncultivated epiphytic bacterial communities of Fucus vesiculosus were obtained.  相似文献   

11.
High-throughput sequencing was used for comparative analysis of microbial communities of the water and mat from the Hoito-Gol mesothermal mineral sulfide spring (Eastern Sayan Mountains, Buryat Republic). Activity of microbial communities was determined. While both spring biotopes were dominated by members of three bacterial phyla—Proteobacteria, Bacteroidetes, and Firmicutes—they differed drastically in the composition of predominant phylotypes (at the genus level). In the water, the organisms widespread in aquatic environments were predominant, mostly aerobic chemoorganotrophs of the genera Acinetobacter, Pedobacter, and Flavobacterium. In the microbial mat, the organisms actively involved in the sulfur cycle predominated, including sulfur-reducing bacteria Sulfurospirillum, sulfate-reducing deltaproteobacteria, sulfuroxidizing chemoautotrophic bacteria, anoxygenic phototrophic bacteria of the phyla Chloroflexi and Chlorobi, as well as purple bacteria belonging to the α-, ß-, and γ-Proteobacteria. Microbial mats of the spring exhibited higher phylogenetic diversity compared to high-temperature mats containing photosynthetic microorganisms.  相似文献   

12.
Paocai is a traditional Chinese fermented food and typically produced via spontaneous fermentation. We have investigated the microbial community utilized for the fermentation of industrialized Qingcai paocai using the combination of Illumina MiSeq sequencing, PCR-mediated denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR (qPCR) assay. Three main phyla, namely Firmicutes, Proteobacteria and Bacteroidetes, were identified by both MiSeq sequencing and PCR-DGGE. The dominant genera observed in the fermentation were Lactobacillus, Pseudomonas, Vibrio and Halomonas. Most genera affiliated with Proteobacteria or Bacteroidetes were detected more often during the earlier part of the fermentation, while Lactobacillus (affiliated with Firmicutes) was dominant during the later fermentation stages. Fungal community analysis revealed that Debaryomyces, Pichia and Kazachstania were the main fungal genera present in industrialized Qingcai paocai, with Debaryomyces being the most dominant during the fermentation process. The quantities of dominant genera Lactobacillus and Debaryomyces were monitored using qPCR and shown to be 109–1012 and 106–1010 copies/mL, respectively. During the later fermentation process of industrialized Qingcai paocai, Lactobacillus and Debaryomyces were present at 1011 and 108 copies/mL, respectively. These results facilitate further understanding of the unique microbial ecosystem during the fermentation of industrialized Qingcai paocai and guide future improvement of the fermentation process.  相似文献   

13.
The Tibetan swine (TIS) is a non-ruminant herbivore with high disease resistance. Also, it has the ability to digest plants with high fiber content. However, it is not known whether any relationship exist between these characteristics of the TIS and its cecal microbiota. Thus, this study aims to investigate the cecal microbiota of the adult TIS using high-throughput sequencing techniques in order to explore possible relationships between these unique characteristics of the TIS (high disease resistance and ability to digest high fiber plants) and its cecal microbiota. PIC pigs (lean type) were chosen as controls. The results show that 75,069 valid sequences of the 16S rRNA gene at V4-V5 region were obtained in the cecal content of TIS. They were composed of 15 phyla, 70 genera and divided into 660 Operational Taxonomic Units (OTUs). Bacteroidetes and Firmicutes were the predominant phyla in both breeds, but TIS had more Bacteroidetes than Firmicutes. Also, 42.4% of the cecal bacteria were found to be unclassified and uncultured. Many cellulolytic bacteria were also found in the two breeds. TIS (88.10%) had much higher abundance in the core bacterial communities than PIC pigs (81.29%), and the proportion of Bacteroides and Spirochaetes that can effectively degrade cellulose were 6.01 and 6.40% higher than PIC pigs, respectively, while Proteobacteria that are closely related to gastrointestinal diseases were 1.61% lower than PIC pigs. Thus, the disease resistance of the TIS and its ability to digest plants with high fiber content may be related to high abundance of core bacterial communities as well as the large number of unknown and unclassified bacteria.  相似文献   

14.

Background

Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches.

Results

113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G. pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90% Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus, Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium, Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes.

Conclusion

This study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species, which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial competence and refractoriness against AT epidemiology.
  相似文献   

15.
To identify potential linkages between specific bacterial populations and process performance in anaerobic digestion, the dynamics of bacterial community structure was monitored with high-throughput sequencing in triplicate anaerobic digesters treating animal waste. Firmicutes and Bacteroidetes were found as the two most abundant populations, however, with contrasting population dynamics in response to organic overloading. Firmicutes dominated the bacterial community during stable process performance at low organic loading rate, representing over 50 % of the bacterial abundance. In contrast, the onset of organic overloading raised the relative abundance of Bacteroidetes from 20 ± 2.6 to 44 ± 3.1 %. In addition to the significant negative correlation between the relative abundance of Firmicutes and Bacteroidetes, populations of Firmicutes and Bacteroidetes were found to be linked to process parameters including organic loading rate, volatile fatty acids concentration, and methane production. Therefore, the population abundance ratio of Firmicutes to Bacteroidetes (F/B ratio) was suggested as a potential indicator for process performance. The interactions between Firmicutes and Bacteroidetes populations could be exploited to develop strategies for the prevention of performance perturbation in anaerobic digestion processes.  相似文献   

16.
Bacteria were identified from a large, seasonally flooded river (Paraná River, Brazil) and two floodplain habitats that were part of the same river system yet very different in nature: clearwater Garças Lagoon and the highly humic waters of Patos Lagoon. Bacterioplankton were collected during mid-summer (Jan. 2002) from water samples (2 l) filtered first through a 1.2-μm filter then a 0.2-μm membrane filter representing the particle-attached and free-living sub-communities, respectively. DNA was extracted from filters and purified and a 16S rRNA clone library established for each habitat. Over 300 clones were sequenced and checked for similarity to existing 16S sequences in GenBank using the BLAST algorithm with default parameters. Further classification of clones was done using a species “backbone” attachment followed by parsimony analysis. The majority (85%) of sequences, referred to here as operational taxonomic units (OTUs), were most similar to uncultured bacterium 16S sequences. OTUs from each Proteobacteria sub-phylum (α, β, γ, δ, ?) were present in the Upper Paraná River system, as well as members of the Bacteroidetes. The microbial assemblage from Patos Lagoon was least like other samples in that it had no Firmicutes present and was dominated by Actinobacteria. Verrucomicrobia OTUs were only found in the free-living assemblage. This study documents the presence of globally distributed phyla in Upper Paraná River and taxa unique to habitat and particle attachment.  相似文献   

17.
Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 106 DNA copies g?1 whereas archaea varied between 5 × 105 and 106 DNA copies g?1 in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid.  相似文献   

18.
We investigated the bacterial community structure of Soldhar hot spring with extreme high temperature 95°C located in Uttarakhand, India using high throughput sequencing. Bacterial phyla Proteobacteria (88.8%), Deinococcus-Thermus (7.5%), Actinobacteria (2.3%), and Firmicutes (1.07%) were predominated in the sequencing survey, whereas Bacteroidetes, Verrucomicrobia, Aquificae and Acidobacteria were detected in relatively lower abundance in Soldhar hot spring. At the family level, Comamonadaceae (52.5%), Alteromonadaceae (15.9%), and Thermaceae (7.5%) were mostly dominated in the ecosystem followed by Chromatiaceae, Microbacteriaceae, and Cyclobacteriaceae. Besides, members of Rhodobacteraceae, Moraxellaceae, Xanthomonadaceae, Aquificaceae, Enterobacteriaceae, Bacillaceae, Methylophilaceae, etc. were detected as a relatively lower abundance. In the present study we discuss the overall microbial community structure and their relevance to the ecology of the Soldhar hot spring environment.  相似文献   

19.
Bioremediation of arsenic (As) pollution is an important environmental issue. The present investigation was carried out to isolate As-resistant novel bacteria and characterize their As transformation and tolerance ability. A total of 170 As-resistant bacteria were isolated from As-contaminated soils at the Kangjiawan lead–zinc tailing mine, located in Hunan Province, southern China. Thirteen As-resistant isolates were screened by exposure to 260 mM Na2HAsO4·7H2O, most of which showed a very high level of resistance to As5+ (MIC?≥?600 mM) and As3+ (MIC?≥?10 mM). Sequence analysis of 16S rRNA genes indicated that the 13 isolates tested belong to the phyla Firmicutes, Proteobacteria and Actinobacteria, and these isolates were assigned to eight genera, Bacillus, Williamsia, Citricoccus, Rhodococcus, Arthrobacter, Ochrobactrum, Pseudomonas and Sphingomonas. Genes involved in As resistance were present in 11 of the isolates. All 13 strains transformed As (1 mM); the oxidation and reduction rates were 5–30% and 10–51.2% within 72 h, respectively. The rates of oxidation by Bacillus sp. Tw1 and Pseudomonas spp. Tw224 peaked at 42.48 and 34.94% at 120 h, respectively. For Pseudomonas spp. Tw224 and Bacillus sp. Tw133, the highest reduction rates were 52.01% at 48 h and 48.66% at 144 h, respectively. Our findings will facilitate further research into As metabolism and bioremediation of As pollution by genome sequencing and genes modification.  相似文献   

20.
Overproduction of livestock manures with unpleasant odors causes significant environmental problems. The microbial fermentation bed (MFB) system is considered an effective approach to recycling utilization of agricultural byproducts and pig manure (PM). To gain a better understanding of bacterial communities present during the degradation of PM in MFB, the PM bacterial community was evaluated at different fermentation stages using 16S rRNA high throughput sequencing technology. The heatmap plot clustered five samples into short-term fermentation stage of 0–10 days and long-term fermentation stage of 15–20 days. The most abundant OTUs at the phylum level were Firmicutes, Actinobacteria and Proteobacteria in the long-term fermentation stage of PM, whereas Firmicutes, Bacteroidetes, and Proteobacteria predominated in the short-term fermentation stage of PM. At the genus level, organic degradation strains, such as Corynebacterium, Bacillus, Virgibacillus, Pseudomonas, Actinobacteria, Lactobacillus, Pediococcus were the predominate genera at the long-term fermentation stage, but were found only rarely in the short-term fermentation stage. C/N ratios increased and the concentration of the unpleasant odor substance 3-hydroxy-5-methylisoxazole (3-MI) decreased with prolonged period of fermentation. Redundancy analysis (RDA) demonstrated that the relative abundance of Firmicutes, Actinobacteria, Acidobacteria and Proteobacteria had a close relationship with degradation of 3-MI and increasing C/N ratio. These results provide valuable additional information about bacterial community composition during PM biodegradation in animal husbandry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号