首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
‘Blue carbon’ ecosystems—seagrasses, tidal marshes, and mangroves—serve as dense carbon sinks important for reducing atmospheric greenhouse gas concentrations, yet only recently have stock estimates emerged. We sampled 96 blue carbon ecosystems across the Victorian coastline (southeast Australia) to quantify total sediment stocks, variability across spatial scales, and estimate emissions associated with historical ecosystem loss. Mean sediment organic carbon (Corg) stock (±SE) to a depth of 30 cm was not significantly different between tidal marshes (87.1 ± 4.90 Mg Corg ha?1) and mangroves (65.6 ± 4.17 Mg Corg ha?1), but was significantly lower in seagrasses (24.3 ± 1.82 Mg Corg ha?1). Location (defined as an individual meadow, marsh, or forest) had a stronger relationship with Corg stock than catchment region, suggesting local-scale conditions drive variability of stocks more than regional-scale processes. We estimate over 2.90 million ± 199,000 Mg Corg in the top 30 cm of blue carbon sediments in Victoria (53% in tidal marshes, 36% in seagrasses, and 11% in mangroves) and sequestration rates of 22,700 ± 5510 Mg Corg year?1 (valued at over $AUD1 million ± 245,000 year?1 based on the average price of $AUD12.14 Mg CO2 eq?1 at Australian Emissions Reduction Fund auctions). We estimate ecosystem loss since European settlement may equate to emissions as high as 4.83 million ± 358,000 Mg CO2 equivalents (assuming 90% remineralization of stocks), 98% of which was associated with tidal marsh loss, and what would have been sequestering 9360 ± 2500 Mg Corg year?1. This study is among the first to present a comprehensive comparison of sediment stocks across and within coastal blue carbon ecosystems. We estimate substantial and valuable carbon stocks associated with these ecosystems that have suffered considerable losses in the past and need protection into the future to maintain their role as carbon sinks.  相似文献   

2.
Among the many ecosystem services provided by mangrove ecosystems, their role in carbon (C) sequestration and storage is quite high compared to other tropical forests. Mangrove forests occupy less than 1 % of tropical forested areas but account for approximately 3 % of global carbon sequestration by tropical forests. Yet there remain many areas where little data on the size and variation of mangrove C stocks exist. To address this gap and examine the range of C stocks in mangroves at landscape scales, we quantified C stocks of Honduran mangroves along the Pacific and Caribbean coasts and the Bay Islands. We also examined differences in ecosystem C stocks due to size and structure of mangrove vegetation found in Honduras. Ecosystem C stocks ranged from 570 Mg C ha?1 in the Pacific coast to ~1000 Mg C ha?1 in Caribbean coast and the Bay Islands. Ecosystem C stocks on the basis of mangrove structure were 1200, 800 and 900 Mg C ha?1, in low, medium and tall mangroves, respectively. We did not find significant differences in ecosystem C stocks on the basis of location (Pacific coast, Caribbean coast and Bay Islands) or mangrove type (low, medium and tall). Mangrove soils represented the single largest pool of total C in these ecosystems, with 87, 81 and 94 % at the Pacific coast, Caribbean coast and the Bay Islands, respectively. While there were no significant differences in total ecosystem stocks among mangrove types, there were differences in where carbon is stored. Mangrove soils among low, medium and tall mangroves contained 99, 93 and 80 % of the total ecosystem C stocks. In addition, we found a small yet significant negative correlation between vegetation C pools and pore water salinity and pH at the sampled sites. Conversion of mangroves into other land use types such as aquaculture or agriculture could result in loses of these soil C reserves due to mineralization and oxidation. Coupled with their other ecosystem services, an understanding of the size of mangrove ecosystem C stocks underscores their values in the formulation of conservation and climate change mitigation strategies in Central America.  相似文献   

3.
Most of our global population and its CO2 emissions can be attributed to urban areas. The process of urbanization changes terrestrial carbon stocks and fluxes, which, in turn, impact ecosystem functions and atmospheric CO2 concentrations. Using the Seattle, WA, region as a case study, this paper explores the relationships between aboveground carbon stocks and land cover within an urbanizing area. The major objectives were to estimate aboveground live and dead terrestrial carbon stocks across multiple land cover classes and quantify the relationships between urban cover and vegetation across a gradient of urbanization. We established 154 sample plots in the Seattle region to assess carbon stocks as a function of distance from the urban core and land cover [urban (heavy, medium, and low), mixed forest, and conifer forest land covers]. The mean (and 95% CI) aboveground live biomass for the region was 89±22 Mg C ha?1 with an additional 11.8±4 Mg C ha?1 of coarse woody debris biomass. The average live biomass stored within forested and urban land covers was 140±40 and 18±14 Mg C ha?1, respectively, with a 57% mean vegetated canopy cover regionally. Both the total carbon stocks and mean vegetated canopy cover were surprisingly high, even within the heavily urbanized areas, well exceeding observations within other urbanizing areas and the average US forested carbon stocks. As urban land covers and populations continue to rapidly increase across the globe, these results highlight the importance of considering vegetation in urbanizing areas within the terrestrial carbon cycle.  相似文献   

4.
Boreal forests are critical to the global carbon (C) cycle. Despite recent advances in our understanding of boreal C budgets, C dynamics during compositional transition to late-succession forests remain unclear. Using a carefully replicated 203-year chronosequence, we examined long-term patterns of forest C stocks and net ecosystem productivity (NEP) following stand-replacing fire in the boreal forest of central Canada. We measured all C pools, including understorey vegetation, belowground biomass, and soil C, which are often missing from C budgets. We found a slight decrease in total ecosystem C stocks during early stand initiation, between 1 and 8 years after fire, at ?0.90 Mg C ha?1 y?1. As stands regenerated, live vegetation biomass increased rapidly, with total ecosystem C stocks reaching a maximum of 287.72 Mg C ha?1 92 years after fire. Total ecosystem C mass then decreased in the 140- and 203-year-old stands, losing between ?0.50 and ?0.74 Mg C ha?1 y?1, contrasting with views that old-growth forests continue to maintain a positive C balance. The C decline corresponded with canopy transition from dominance of Populus tremuloides, Pinus banksiana, and Picea mariana in the 92-year-old stands to Betula papyrifera, Picea glauca, and Abies balsamea in the 203-year-old stands. Results from this study highlight the role of succession in long-term forest C dynamics and its importance when modeling terrestrial C flux.  相似文献   

5.
Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide‐dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid‐infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine‐scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175–504 Mg/ha) than those in nonriverine settings (44–271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000–5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across intertidal wetland systems.  相似文献   

6.
Current knowledge of Africa’s carbon (C) pools is limited despite its importance in the global C budget. To increase the understanding of C stocks in African woodlands, we asked how C stocks in soil and vegetation vary across a miombo woodland landscape and to what degree and at what scales are these stocks linked? We sampled along a 5-km transect using a cyclic sampling scheme to allow geostatistical analyses. Soil C stocks in the top 5?cm (12.1?±?0.6?Mg?C?ha?1 (±?SE)) and 30?cm depths (40.1?±?2.5?Mg?C?ha?1) varied significantly at scales of a few meters (autocorrelation distance 14?m in 0–5-cm and 26?m in 0–30-cm interval), and aboveground (AG) woody C stocks (20.7?±?1.8?Mg?C?ha?1) varied significantly at kilometer scales (1,426?m). Soil textural distributions were linked to topography (r 2?=?0.54) as were large-tree AG C stocks (r 2?=?0.70). AG C stocks were constrained to an upper boundary by soil texture with greater AG C being associated with coarser textured soils. Vegetation and soil C stocks were coupled in the landscape in the top 5?cm of soil (r 2?=?0.24) but not with deeper soil C stocks, which were coupled to soil clay content (r 2?=?0.38). This study is one of the most complete transect studies in an African miombo woodland, and suggests that C stock distributions are strongly linked to topography and soil texture. To optimize sampling strategies for C stock assessments in miombo, soil C should be sampled at more than 26?m apart, and AG C should be sampled at more than 1,426?m apart in plots larger than 0.5?ha.  相似文献   

7.
Heterotrophic respiration is a major component of the soil C balance however we critically lack understanding of its variation upon conversion of peat swamp forests in tropical areas. Our research focused on a primary peat swamp forest and two oil palm plantations aged 1 (OP2012) and 6 years (OP2007). Total and heterotrophic soil respiration were monitored over 13 months in paired control and trenched plots. Spatial variability was taken into account by differentiating hummocks from hollows in the forest; close to palm from far from palm positions in the plantations. Annual total soil respiration was the highest in the oldest plantation (13.8 ± 0.3 Mg C ha?1 year?1) followed by the forest and youngest plantation (12.9 ± 0.3 and 11.7 ± 0.4 Mg C ha?1 year?1, respectively). In contrast, the contribution of heterotrophic to total respiration and annual heterotrophic respiration were lower in the forest (55.1 ± 2.8%; 7.1 ± 0.4 Mg C ha?1 year?1) than in the plantations (82.5 ± 5.8 and 61.0 ± 2.3%; 9.6 ± 0.8 and 8.4 ± 0.3 Mg C ha?1 year?1 in the OP2012 and OP2007, respectively). The use of total soil respiration rates measured far from palms as an indicator of heterotrophic respiration, as proposed in the literature, overestimates peat and litter mineralization by around 21%. Preliminary budget estimates suggest that over the monitoring period, the peat was a net C source in all land uses; C loss in the plantations was more than twice the loss observed in the forest.  相似文献   

8.
Low stocks of coarse woody debris in a southwest Amazonian forest   总被引:1,自引:0,他引:1  
The stocks and dynamics of coarse woody debris (CWD) are significant components of the carbon cycle within tropical forests. However, to date, there have been no reports of CWD stocks and fluxes from the approximately 1.3 million km2 of lowland western Amazonian forests. Here, we present estimates of CWD stocks and annual CWD inputs from forests in southern Peru. Total stocks were low compared to other tropical forest sites, whether estimated by line-intercept sampling (24.4 ± 5.3 Mg ha−1) or by complete inventories within 11 permanent plots (17.7 ± 2.4 Mg ha−1). However, annual inputs, estimated from long-term data on tree mortality rates in the same plots, were similar to other studies (3.8 ± 0.2 or 2.9 ± 0.2 Mg ha−1 year−1, depending on the equation used to estimate biomass). Assuming the CWD pool is at steady state, the turnover time of coarse woody debris is low (4.7 ± 2.6 or 6.1 ± 2.6 years). These results indicate that these sites have not experienced a recent, large-scale disturbance event and emphasise the distinctive, rapid nature of carbon cycling in these western Amazonian forests.  相似文献   

9.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

10.
Life-cycle assessments (LCAs) of switchgrass (Panicum virgatum L.) grown for bioenergy production require data on soil organic carbon (SOC) change and harvested C yields to accurately estimate net greenhouse gas (GHG) emissions. To date, nearly all information on SOC change under switchgrass has been based on modeled assumptions or small plot research, both of which do not take into account spatial variability within or across sites for an agro-ecoregion. To address this need, we measured change in SOC and harvested C yield for switchgrass fields on ten farms in the central and northern Great Plains, USA (930 km latitudinal range). Change in SOC was determined by collecting multiple soil samples in transects across the fields prior to planting switchgrass and again 5 years later after switchgrass had been grown and managed as a bioenergy crop. Harvested aboveground C averaged 2.5?±?0.7 Mg C ha?1 over the 5 year study. Across sites, SOC increased significantly at 0–30 cm (P?=?0.03) and 0–120 cm (P?=?0.07), with accrual rates of 1.1 and 2.9 Mg C ha?1 year?1 (4.0 and 10.6 Mg CO2 ha?1 year?1), respectively. Change in SOC across sites varied considerably, however, ranging from ?0.6 to 4.3 Mg C ha?1 year?1 for the 0–30 cm depth. Such variation in SOC change must be taken into consideration in LCAs. Net GHG emissions from bioenergy crops vary in space and time. Such variation, coupled with an increased reliance on agriculture for energy production, underscores the need for long-term environmental monitoring sites in major agro-ecoregions.  相似文献   

11.
Fire and overgrazing reduce aboveground biomass, leading to land degradation and potential impacts on soil organic carbon (SOC) and total nitrogen (TN) dynamics. However, empirical data are lacking on how prescribed burning and livestock exclusion impact SOC in the long-term. Here we analyse the effects of 19 years of prescribed annual burning and livestock exclusion on tree density, SOC and TN concentrations in the Sudanian savanna ecoregion at two sites (Tiogo and Laba) in Burkina Faso. Results revealed that neither livestock exclusion nor prescribed burning had significant impact on SOC and TN concentrations. The results at both sites indicate that 19 years of livestock and fire exclusion did not result in a significant increase in tree density compared to grazing and annual prescribed burning. The overall mean (± SEM) of SOC stocks in the 0–50 cm depth increment in the unburnt (53.5 ± 4.7 Mg C ha−1) and annually burnt (56.4 ± 4.3 Mg C ha−1) plots at Tiogo were not statistically different. Similarly, at Laba there was no significant difference between the corresponding figures in the unburnt (37.9 ± 2.6 Mg ha−1) and in the annually burnt plots (38.6 ± 1.9 Mg ha−1). Increases in belowground inputs from root turnover may have countered changes in aboveground biomass, resulting in no net change in SOC and TN. We conclude that, contrary to our expectation and current policy recommendations, restricting burning or grazing did not result in increase in SOC stocks in this dry savanna ecosystem.  相似文献   

12.
The net primary productivity, carbon (C) stocks and turnover rates (i.e. C dynamics) of tropical forests are an important aspect of the global C cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests (TMFs). This study examines spatial patterns of above‐ and belowground C dynamics along a transect ranging from lowland Amazonia to the high Andes in SE Peru. Fine root biomass values increased from 1.50 Mg C ha?1 at 194 m to 4.95 ± 0.62 Mg C ha?1 at 3020 m, reaching a maximum of 6.83 ± 1.13 Mg C ha?1 at the 2020 m elevation site. Aboveground biomass values decreased from 123.50 Mg C ha?1 at 194 m to 47.03 Mg C ha?1 at 3020 m. Mean annual belowground productivity was highest in the most fertile lowland plots (7.40 ± 1.00 Mg C ha?1 yr?1) and ranged between 3.43 ± 0.73 and 1.48 ± 0.40 Mg C ha?1 yr?1 in the premontane and montane plots. Mean annual aboveground productivity was estimated to vary between 9.50 ± 1.08 Mg C ha?1 yr?1 (210 m) and 2.59 ± 0.40 Mg C ha?1 yr?1 (2020 m), with consistently lower values observed in the cloud immersion zone of the montane forest. Fine root C residence time increased from 0.31 years in lowland Amazonia to 3.78 ± 0.81 years at 3020 m and stem C residence time remained constant along the elevational transect, with a mean of 54 ± 4 years. The ratio of fine root biomass to stem biomass increased significantly with increasing elevation, whereas the allocation of net primary productivity above‐ and belowground remained approximately constant at all elevations. Although net primary productivity declined in the TMF, the partitioning of productivity between the ecosystem subcomponents remained the same in lowland, premontane and montane forests.  相似文献   

13.
Mangrove forests cover a small fraction of the earth’s surface, but contribute disproportionately to ecosystem services, including carbon (C) storage. These forests are being rapidly degraded as demand for economic development grows. In recognition of the multiple benefits of mangrove forests, rehabilitation of degraded forests is being carried out in many regions. This study assesses the potential for restored mangrove forests in Vietnam to sequester and store C, by characterizing two different mangrove restoration areas in the Mekong Delta region. The Can Gio Mangrove Biospheres Reserve (CGMBR) in Ho Chi Minh City was highly degraded during the Vietnam War and was subsequently replanted between 1978 and 1998. The Kien Vang Protection Forest (KVPF) in Ca Mau Province was similarly degraded during the war, but unlike CGMBR, it has experienced natural regeneration over the last 35 years. We find that vegetation structure between two sites are not different significantly, though CGMBR has richer mangrove species diversity than KVPF. The mean of total ecosystem C stocks in planted mangroves of CGMBR (889 ± 111 MgC ha?1) is not significantly different compare to natural regeneration forests of KVPF (844 ± 58 MgC ha?1). Our findings suggest that after 35 years, both anthropogenically and naturally regenerated mangroves appear to store similar levels of C.  相似文献   

14.
Owing to the increased demand for ethanol biofuel from sugar cane, the area planted to this crop in Brazil has increased from 4.8 to 9.5 Mha since 2000. At the same time there has been pressure from environmental groups and others to cease the pre-harvest burning of cane, and today over 40% of the crop is harvested without burning, thus conserving the trash on the soil surface. While most trash decomposes during the year, it is generally assumed that this transition from burning to trash conservation will have benefits for cane productivity and increase soil carbon stocks. To investigate the possible benefits of this change of practice an experiment was carried out in the state of Espírito Santo, south-eastern Brazil, to investigate the long-term effects of the practice of pre-harvested burning compared to trash conservation on soil fertility and soil C and N stocks. The results showed that over a 14-year period, trash conservation marginally decreased soil acidity and significantly increased soil C and N stocks in 0–10 cm depth interval. Although the trash conservation treatment accumulated 13 Mg C ha?1 more than the burned treatment, this difference was not statistically different. However, the stocks of N to 100 cm depth were 900 kg ha?1 higher under the trash conservation treatment and this difference was statistically significant. The 13C abundance data suggested that where trash was conserved, more soil C was derived from the sugar cane than from the original native vegetation.  相似文献   

15.
The allocation and cycling of carbon (C) within forests is an important component of the biospheric C cycle, but is particularly understudied within tropical forests. We synthesise reported and unpublished results from three lowland rainforest sites in Amazonia (in the regions of Manaus, Tapajós and Caxiuanã), all major sites of the Large‐Scale Biosphere–Atmosphere Programme (LBA). We attempt a comprehensive synthesis of the C stocks, nutrient status and, particularly, the allocation and internal C dynamics of all three sites. The calculated net primary productivities (NPP) are 10.1±1.4 Mg C ha−1 yr−1 (Manaus), 14.4±1.3 Mg C ha−1 yr−1 (Tapajós) and 10.0±1.2 Mg C ha−1 yr−1 (Caxiuanã). All errors bars report standard errors. Soil and leaf nutrient analyses indicate that Tapajós has significantly more plant‐available phosphorus and calcium. Autotrophic respiration at all three sites (14.9–21.4 Mg C ha yr−1) is more challenging to measure, with the largest component and greatest source of uncertainty being leaf dark respiration. Comparison of measured soil respiration with that predicted from C cycling measurements provides an independent constraint. It shows general good agreement at all three sites, with perhaps some evidence for measured soil respiration being less than expected. Twenty to thirty percent of fixed C is allocated belowground. Comparison of gross primary productivity (GPP), derived from ecosystem flux measurements with that derived from component studies (NPP plus autotrophic respiration) provides an additional crosscheck. The two approaches are in good agreement, giving increased confidence in both approaches to estimating GPP. The ecosystem carbon‐use efficiency (CUEs), the ratio of NPP to GPP, is similar at Manaus (0.34±0.10) and Caxiuanã (0.32±0.07), but may be higher at Tapajós (0.49±0.16), although the difference is not significant. Old growth or infertile tropical forests may have low CUE compared with recently disturbed and/or fertile forests.  相似文献   

16.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

17.
Livestock grazing is known to influence carbon (C) storage in vegetation and soil. Yet, for grazing management to be used to optimize C storage, large scale investigations that take into account the typically heterogeneous distribution of grazers and C across the landscape are required. In a landscape-scale grazing experiment in the Scottish uplands, we quantified C stored in swards dominated by the widespread tussock-forming grass species Molinia caerulea. The impact of three sheep stocking treatments (‘commercial’ 2.7 ewes ha?1 y?1, ‘low’ 0.9 ewes ha?1 y?1 and no livestock) on plant C stocks was determined at three spatial scales; tussock, sward and landscape, and these data were used to predict long-term changes in soil organic carbon (SOC). We found that tussocks were particularly dense C stores (that is, high C mass per unit area) and that grazing reduced their abundance and thus influenced C stocks held in M. caerulea swards across the landscape; C stocks were 3.83, 5.01 and 6.85 Mg C ha?1 under commercial sheep grazing, low sheep grazing and no grazing, respectively. Measured vegetation C in the three grazing treatments provided annual C inputs to RothC, an organic matter turnover model, to predict changes in SOC over 100 years. RothC predicted SOC to decline under commercial sheep stocking and increase under low sheep grazing and no grazing. Our findings suggest that no sheep and low-intensity sheep grazing are better upland management practices for enhancing plant and soil C sequestration than commercial sheep grazing. This is evaluated in the context of other upland management objectives.  相似文献   

18.
Soil degradation in the savannah-derived agroecosystems of West Africa is often associated with rapid depletion of organic carbon stocks in soils of coarse texture. Field experiments were conducted over a period of more than 30 years at two sites in semiarid Togo to test the impact of agricultural management practices on soil C stocks and crop productivity. The resulting datasets were analysed using dynamic simulation models of varying complexity, to study the impact of crop rotation, fertiliser use and crop residue management on soil C dynamics. The models were then used to calculate the size of the annual C inputs necessary to restore C stocks to thresholds that would allow positive crop responses to fertilisers under continuous cultivation. Yields of all crops declined over the 30 years irrespective of crop rotation, fertiliser use or crop residue management. Both seed-cotton and cereal grain yields with fertiliser fluctuated around 1 t ha?1 after 20 years. Rotations that included early maturing sorghum varieties provided larger C inputs to the soil through residue biomass; around 2.5 t C ha?1?year?1. Soil C stocks, originally of 15 t ha?1 after woodland clearance, decreased by around 3 t ha?1 at both sites and for virtually all treatments, reaching lower equilibrium levels after 5–10 years of cultivation. Soil C dynamics were well described with a two-pool SOM model running on an annual time step, with parameter values of 0.25 for the fraction of resistant plant material (K1), 0.15–0.20 for the decomposition rate of labile soil C (K2) and 8–10 t C ha?1 for the fraction of stable C in the soil. Simulated addition of organic matter to the soil 30 years after woodland clearance indicated that additions of 3 t C ha?1?year?1 for 15–20 years would be necessary to build ‘threshold’ soil C stocks of around 13 t ha?1, compatible with positive crop response to fertiliser. The simulated soil C increases of 0.5 to 1.6% per year are comparable with results from long-term experiments in the region. However, the amounts of organic matter necessary to build these soil C stocks are not readily available to resource-poor farmers. These experimental results question the assumption that crop residue removal and lack of fertiliser input are responsible for soil C decline in these soils. Even when residues were incorporated and fertilisers used at high rates, crop C inputs were insufficient to compensate for C losses from these sandy soils under continuous cultivation.  相似文献   

19.
Mangrove forests of the Sinú river delta in Cispatá bay, Colombia, show large differences in soil carbon storage between fringe (oceanic) and basin (estuarine) mangroves. We were interested in testing whether these differences in soil carbon are associated with sediment transport processes or whether most of the carbon is produced in situ within the mangrove system. Given past sedimentation dynamics of the Sinú river, we hypothesized that a large portion of soil carbon in basin mangroves is due to sedimentation. We determined total organic carbon content (TOC) as 660.93 ± 259.18 MgC ha?1 for basin soils up to a sampling depth of 1 m, and as 259 ± 42.61 MgC ha?1 for fringe soils up to 80 cm depth (maximum soil depth for fringe soils). Using analyses of mineralogy (Al- and Fe-oxides, clay minerals) as well as isotopic analyses of carbon (δ13C), the origin of the sediments and their carbon was determined. We found that basin soils in Cispatá bay show similar mineralogical composition than those of fluvial sediments, but the carbon concentration of river sediments was close to zero. Given the large capacity of the Fe and Al oxides in clay minerals to store dissolved carbon, and that the isotopic composition of the carbon is mostly of plant origin, we concluded contrary to our initial hypothesis that the carbon stored in basin mangrove soils are produced in situ. The deposited fluvial sediments do play an important role for carbon storage, but mostly in providing binding surfaces for the stabilization of organic carbon.  相似文献   

20.
Carbon (C) added to soil as organic matter in crop residues and carbon emitted to the atmosphere as CO2 in soil respiration are key determinants of the C balance in cropland ecosystems. We used complete and comprehensive county-level yields and area data to estimate and analyze the spatial and temporal variability of regional and national scale residue C inputs, net primary productivity (NPP), and C stocks in US croplands from 1982 to 1997. Annual residue C inputs were highest in the North Central and Central and Northern Plains regions that comprise ~70% of US cropland. Average residue C inputs ranged from 1.8 (Delta States) to 3.0 (North Central region) Mg?C?ha?1?year?1, and average NPP ranged from 3.1 (Delta States) to 5.4 (Far West region) Mg?C?ha?1?year?1. Residue C inputs tended to be inversely proportional to the mean growing season temperature. A quadratic relationship incorporating the growing season mean temperature and total precipitation closely predicted the variation in residue C inputs in the North Central region and Central and Northern Plains. We analyzed the soil C balance using the crop residue database and the Introductory Carbon Balance regional Model (ICBMr). Soil C stocks (0–20?cm) on permanent cropland ranged between 3.07 and 3.1?Pg during the study period, with an average increase of ~4?Tg?C?year?1, during the 1990s. Interannual variability in soil C stocks ranged from 0 to 20?Tg?C (across a mean C stock of 3.08?±?0.01?Pg) during the study period; interannual variability in residue C inputs varied between 1 and 43?Tg C (across a mean input of 220?±?19?Tg). Such interannual variation has implications for national estimates of CO2 emissions from cropland soils needed for implementation of greenhouse gas (GHG) mitigation strategies involving agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号