首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study domain organization and movements in the reaction cycle of heavy metal ion pumps, CopA, a bacterial Cu+-ATPase from Thermotoga maritima was cloned, overexpressed, and purified, and then subjected to limited proteolysis using papain. Stable analogs of intermediate states were generated using AMPPCP as a nonhydrolyzable ATP analog and AlFx as a phosphate analog, following conditions established for Ca2+-ATPase (SERCA1). Characteristic digestion patterns obtained for different analog intermediates show that CopA undergoes domain rearrangements very similar to those of SERCA1. Digestion sites were identified on the loops connecting the A-domain and the transmembrane helices M2 and M3 as well as on that connecting the N-terminal metal binding domain (NMBD) and the first transmembrane helix, Ma. These digestion sites were protected in the E1P.ADP and E2P analogs, whereas the M2-A-domain loop was cleaved specifically in the absence of ions to be transported, just as in SERCA1. ATPase activity was lost when the link between the NMBD and the transmembrane domain was cleaved, indicating that the NMBD plays a critical role in ATP hydrolysis in T. maritima CopA. The change in susceptibility of the loop between the NMBD and Ma helix provides evidence that the NMBD is associated to the A-domain and recruited into domain rearrangements and that the Ma helix is the counterpart of the M1 helix in SERCA1 and Mb and Mc are uniquely inserted before M2.  相似文献   

2.
The thermophilic, sulfur metabolizing Archaeoglobus fulgidus contains two genes, AF0473 and AF0152, encoding for PIB-type heavy metal transport ATPases. In this study, we describe the cloning, heterologous expression, purification, and functional characterization of one of these ATPases, CopA (NCB accession number AAB90763), encoded by AF0473. CopA is active at high temperatures (75 degrees C; E(a) = 103 kJ/mol) and inactive at 37 degrees C. It is activated by Ag+ (ATPase V(max) = 14.82 micromol/mg/h) and to a lesser extent by Cu+ (ATPase V(max) = 3.66 micromol/mg/h). However, Cu+ interacts with the enzyme with higher apparent affinity (ATPase stimulation, Ag+ K(12) = 29.4 microm; Cu+ K(12) = 2.1 microm). This activation by Ag+ or Cu+ is dependent on the presence of millimolar amounts of cysteine. In the presence of ATP, these metals drive the formation of an acid-stable phosphoenzyme with apparent affinities similar to those observed in the ATPase activity determinations (Ag+, K(12) = 23.0 microm; Cu+, K(12) = 3.9 microm). However, comparable levels of phosphoenzyme are reached in the presence of both cations (Ag+, 1.40 nmol/mg; Cu+, 1.08 nmol/mg). The stimulation of phosphorylation by the cations suggests that CopA drives the outward movement of the metal. CopA presents additional functional characteristics similar to other P-type ATPases. ATP interacts with the enzyme with two apparent affinities (ATPase K(m) = 0.25 mm; phosphorylation K(m) = 4.81 microm), and the presence of vanadate leads to enzyme inactivation (IC(50) = 24 microm). This is the first Ag+/Cu+ -ATPase expressed and purified in a functional form. Thus, it provides a model for structure-functional studies of these transporters. Moreover, its characterization will also contribute to an understanding of thermophilic ion transporters.  相似文献   

3.
Hua S  Ma H  Lewis D  Inesi G  Toyoshima C 《Biochemistry》2002,41(7):2264-2272
Experimental perturbations of the nucleotide site in the N domain of the SR Ca2+ ATPase were produced by chemical derivatization of Lys492 or/and Lys515, mutation of Arg560 to Ala, or addition of inactive nucleotide analogue (TNP-AMP). Selective labeling of either Lys492 or Lys515 produces strong inhibition of ATPase activity and phosphoenzyme intermediate formation by utilization of ATP, while AcP utilization and reverse ATPase phosphorylation by Pi are much less affected. Cross-linking of the two residues with DIDS, however, drastically inhibits utilization of both ATP and AcP, as well as of formation of phosphoenzyme intermediate by utilization of ATP, or reverse phosphorylation by Pi. Mutation of Arg560 to Ala produces strong inhibition of ATPase activity and enzyme phosphorylation by ATP but has a much lower effect on enzyme phosphorylation by Pi. TNP-AMP increases the ATPase activity at low concentrations (0.1-0.3 microM), but inhibits ATP, AcP, and Pi utilization at higher concentration (1-10 microM). Cross-linking with DIDS and TNP-AMP binding inhibits formation of the transition state analogue with orthovanadate. It is concluded that in addition to the binding pocket delimited by Lys 492 and Lys515, Arg560 sustains an important and direct role in nucleotide substrate stabilization. Furthermore, the effects of DIDS and TNP-AMP suggest that approximation of N (nucleotide) and P (phosphorylation) domains is required not only for delivery of nucleotide substrate, but also to favor enzyme phosphorylation by nucleotide and nonnucleotide substrates, in the presence and in the absence of Ca2+. Domain separation is then enhanced by secondary nucleotide binding to the phosphoenzyme, thereby favoring its hydrolytic cleavage.  相似文献   

4.
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function.  相似文献   

5.
A preparation of purified erythrocyte membrane ATPase whose activation by Ca2+ is or is not dependent on calmodulin depending on the enzyme dilution was used in the low dilution state for these studies. In appropriate conditions, the purified ATPase in the absence of calmodulin exhibited a Ca2+ concentration dependence identical to that of the native enzyme in the erythrocyte membrane ghost in the presence of calmodulin. Accordingly, an apparent Kd approximately equal to 1 X 10(-7) M was derived for cooperative calcium binding to the activating and transport sites of the nonphosphorylated enzyme. The kinetics of enzyme phosphorylation in the transient state following addition of ATP to enzyme activated with calcium were then resolved by rapid kinetic methods, demonstrating directly that phosphoenzyme formation precedes Pi production, consistent with the phosphoenzyme role as an intermediate in the catalytic cycle. Titration of a low affinity site (Kd approximately equal to 2 X 10(-3) M) with calcium produced inhibition of phosphoenzyme cleavage and favored reversal of the catalytic cycle, indicating that calcium dissociation from the transport sites precedes hydrolytic cleavage of the phosphoenzyme. The two different calcium dissociation constants of the nonphosphorylated and phosphorylated enzyme demonstrate that a phosphorylation-induced reduction of calcium affinity is the basic coupling mechanism of catalysis and active transport, with an energy expenditure of approximately 6 kcal/mol of calcium in standard conditions. From the kinetic point of view, a rate-limiting step is identified with the slow dissociation of calcium from the phosphoenzyme; another relatively slow step following hydrolytic cleavage and preceding recycling of the enzyme is suggested by the occurrence of a presteady state phosphoenzyme overshoot.  相似文献   

6.
Using inside-out vesicles of human red cell membranes, the side-specific effects of Na+ on phosphorylation of (Na,K)-ATPase have been studied using low concentrations of [gamma-32P]ATP (less than or equal to 0.1 microM). Phosphorylation is stimulated by Na+ at the cytoplasmic membrane surface (extravesicular Na+) alone and not by Na+ at the external surface (intravesicular Na+). At 37 degrees C, external Na+ (less than or equal to 10 mM) does, however, increase the steady state level (approximately 2 1/2-fold) of phosphoenzyme above that observed with cytoplasmic Na+ alone; hydrolysis is increased to only a small extent. Little stimulation by external Na+ is observed at 0 degrees C. As Na+ at the cytoplasmic side is decreased to very low levels (less than or equal to 0.2 mM) several kinetic changes are observed: (i) the apparent turnover of phosphoenzyme (ratio Na+-ATP-ase/phosphoenzyme level) is markedly increased (approximately 3-fold, (ii) Rbext sensitivity (inhibition of (Na)-ATPase at low ATP levels) is reduced, and (iii) the ratio of Na+ ions transported per molecule of ATP hydrolyzed is decreased. These results are compatible with a reaction pathway involving a transition from one form of phosphoenzyme, E1-P, to another, E2-P of which the hydrolysis is decreased by moderate levels of external Na+. It is suggested also that an alternate reaction pathway for Na+-ATPase occurs at very low cytoplasmic Na+, one via hydrolysis of E1-P and not associated with Na+ translocation.  相似文献   

7.
1. Conditions for binding of [gamma-32P]ATP to bovine brain Na+,K+-stimulated ATPase were investigated by the indirect technique of measuring the initial rate of 32P-labelling of the active site of the enzyme. 2. At 100 muM [gamma-32P]ATP in the presence of 3 mM MgCl2, approximately the same very high rate of formation of [32P]phosphoenzyme was obtained irrespective of whether [gamma-32P]ATP was added to the enzyme simultaneously with, or 70 ms in advance of the addition of NaCl. A comparatively slow rate of phosphorylation was obtained at 5 muM[gamma-32P]ATP without preincubation. However, on preincubation of the enzyme with 5 muM[gamma-32P]ATP a rate of formation of [32P]phosphoenzyme almost as rapid as at 100 muM[gamma-32P]ATP was observed. 3. A transient [32P]phosphoenzyme was discovered. It appeared in the presence of K+, under conditions which allowed extensive binding of [gamma-32P]-ATP. The amount of [gamma-32P]ATP that could be bound to the enzyme seemed to equal the amount of [32P] phosphorylatable sites. 4. The formation of the transient [32P] phosphoenzyme was inhibited by ADP. The transient [32P] phosphoenzyme was concluded mainly to represent the K+-insensitive and ADP-sensitive E1-32P. 5. When KCl was present in the enzyme solution before the addition of NaCl only a comparatively slow rate of phosphorylation was observed. On preincubation of the enzyme with [gamma-32]ATP an increase in the rate of formation of [32P] phosphoenzyme was obtained, but there was no transient [32P]-phosphoenzyme. The transient [32P]phosphoenzyme was, however, detected when the enzyme solution contained NaCl in addition to KCl and the phosphorylation was started by the addition of [gamma-32P]ATP.  相似文献   

8.
The Na/K-ATPase has been shown to bind 1 and 0.5 mol of (32)P/mol of alpha-chain in the presence [gamma-(32)P]ATP and [alpha-(32)P]ATP, respectively, accompanied by a maximum accumulation of 0.5 mol of ADP-sensitive phosphoenzyme (NaE1P) and potassium-sensitive phosphoenzyme (E2P). The former accumulation was followed by the slow constant liberation of P(i), but the latter was accompanied with a rapid approximately 0.25 mol of acid-labile P(i) burst. The rubidium (potassium congener)-occluded enzyme (approximately 1.7 mol of rubidium/mol of alpha-chain) completely lost rubidium on the addition of sodium + magnesium. Further addition of approximately 100 microM [gamma-(32)P]ATP and [alpha-(32)P]ATP, both induced 0.5 mol of (32)P-ATP binding to the enzyme and caused accumulation of approximately 1 mol of rubidium/mol of alpha-chain, accompanied by a rapid approximately 0.5 mol of P(i) burst with no detectable phosphoenzyme under steady state conditions. Electron microscopy of rotary-shadowed soluble and membrane-bound Na/K-ATPases and an antibody-Na/K-ATPase complex, indicated the presence of tetraprotomeric structures (alphabeta)(4). These and other data suggest that Na/K-ATP hydrolysis occurs via four parallel paths, the sequential appearance of (NaE1P:E.ATP)(2), (E2P:E.ATP:E2P:E. ADP/P(i)), and (KE2:E.ADP/P(i))(2), each of which has been previously referred to as NaE1P, E2P, and KE2, respectively.  相似文献   

9.
The dephosphorylation kinetics of acid-stable phosphointermediates of (Na+ + K+)-ATPase from ox brain, ox kidney and pig kidney was studied at 0 degree C. Experiments performed on brain enzyme phosphorylated at 0 degree C in the presence of 20-600 mM Na+, 1 mM Mg2+ and 25 microM [gamma-32P]ATP show that irrespectively of the EP-pool composition, which is determined by Na+ concentration, all phosphoenzyme is either ADP- or K+-sensitive. After phosphorylation of kidney enzymes at 0 degree C with 1 mM Mg2+, 25 microM [gamma-32P]ATP and 150-1000 mM Na+ the amounts of ADP- and K+-sensitive phosphoenzymes were determined by addition of 1 mM ATP + 2.5 mM ADP or 1 mM ATP + 20 mM K+. Similarly to the previously reported results on brain enzyme, both types of dephosphorylation curves have a fast and a slow phase, so that also for kidney enzymes a slow decay of a part of the phosphoenzyme, up to 80% at 1000 mM Na+, after addition of 1 mM ATP + 20 mM K+ is observed. The results obtained with the kidney enzymes seem therefore to reinforce previous doubts about the role played by E1 approximately P(Na3) as intermediate of (Na+ + K+)-ATPase activity. Furthermore, for both kidney enzymes the sum of ADP- and K+-sensitive phosphoenzymes is greater than E tot. In experiments on brain enzyme an estimate of dissociation rate constant for the enzyme-ATP complex, k-1, is obtained. k-1 varies between 1 and 4 s-1 and seems to depend on the ligands present during formation of the complex. The highest values are found for enzyme-ATP complex formed in the presence of Na+ or Tris+. The results confirm the validity of the three-pool model in describing dephosphorylation kinetics of phosphointermediates of Na+-ATPase activity.  相似文献   

10.
Abe K  Kaya S  Imagawa T  Taniguchi K 《Biochemistry》2002,41(7):2438-2445
The maximum amount of acid-stable phosphoenzyme (E32P)/mol of alpha chain of pig gastric H/K-ATPase from [gamma-32P]ATP (K(1/2) = 0.5 microM) was found to be approximately 0.5, which was half of that formed from 32P(i) (K(1/2) = 0.22 mM). The maximum 32P binding for the enzyme during turnover in the presence of [gamma-32P]ATP or [alpha-32P]ATP was due to 0.5 mol of E32P + 0.5 mol of an acid-labile enzyme-bound [gamma-32P]ATP (EATP) or 0.5 mol of an acid-labile enzyme-bound [alpha-32P]ATP, respectively. The K(1/2) for EATP formation in both cases was 0.12 approximately 0.14 mM. The turnover number of the enzyme (i.e., the H+-ATPase activity/(EP + EATP)) was very close to the apparent rate constants for EP breakdown and P(i) liberation, both of which decreased with increasing concentrations of ATP. The ratio of the amount of P(i) liberated to that of EP that disappeared increased from 1 to approximately 2 with increasing concentrations of ATP (i.e., equal amounts of EP and EATP exist, both of which release phosphate in the presence of high concentrations of ATP). This represents the first direct evidence, for the case of a P-type ATPase, in which 2 mol of P(i) liberation occurs simultaneously from 1 mol of EP for half of the enzyme molecules and 1 mol of EATP for the other half during ATP hydrolysis. Each catalytic alpha chain is involved in cross-talk, thus maintaining half-site phosphorylation and half-site ATP binding which are induced by high- and low-affinity ATP binding, respectively, in the presence of Mg2+.  相似文献   

11.
C Heilmann  C Spamer  W Gerok 《Cell calcium》1989,10(5):275-287
Microsomal fractions, highly enriched with endoplasmic reticulum of rat and human liver exhibit Ca2+ uptake catalyzed by a Ca2+-pumping ATPase. The mechanism of Ca2+-translocation involves: (i) reversible Ca2+-dependent formation of an acyl-phosphoenzyme intermediate (Mr 116,000 to 118,000) with bound Ca2+, which in the reversed reaction can transphosphorylate its Pi to ADP to re-synthesize ATP; (ii) reversible transition of the ADP-reactive phosphoenzyme into an isomer without bound Ca2+, not further reactive to ADP; (iii) hydrolytic cleavage, stimulated by Mg2+, K+, and ATP of the ADP-unreactive phosphoenzyme with liberation of Pi. By analogy to a mechanism proposed for the Ca2+ pump of sarcoplasmic reticulum, the translocation of Ca2+ to and dissociation from the inner side of the membrane is suggested to occur by a conformational change, coupled with a decrease in Ca2+-affinity of the phosphoenzyme during its transition into the ADP-unreactive isomer. With CaATP as the effective substrate the reactions proceed normally but at a considerably slower rate.  相似文献   

12.
The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of Ca2+ was studied. At pH 6.0, 10 degrees C and in the absence of K+, the enzyme displays a very low velocity of ATP hydrolysis. Addition of up to 15% dimethyl sulfoxide increased this velocity severalfold (from 5-18 nmol of Pi X mg of protein-1 X h-1) and then decreased at higher solvent concentrations. Dimethyl sulfoxide increased both enzyme phosphorylation from ATP and the affinity for this substrate. Maximal levels of 1.0-1.2 nmol of EP X mg of protein-1 and apparent KM for ATP of 5 X 10(-6) M were obtained at a concentration of 30% dimethyl sulfoxide. The same preparation under optimal conditions (pH 7.5, 10 microM CaCl2, 100 mM KCl and no dimethyl sulfoxide at 37 degrees C) displays a velocity of ATP hydrolysis between 8 and 12 X 10(5) nmol of Pi X mg of protein-1 X h-1 while the phosphoenzyme levels varied between 3.5 and 4.0 nmol of EP X mg of protein-1. Enzyme phosphorylation from ATP in the absence of Ca2+ always preceded Pi liberation into the assay media. Two different phosphoenzyme species were formed which were kinetically distinguished by their decomposition rates. The observed steady-state velocity of ATP hydrolysis could be accounted for either by the decay of the fast component or by the simultaneous decomposition of both phosphoenzyme species. The hydrolysis of the phosphoenzyme formed in the absence of Ca2+ was KCl-stimulated and ADP-independent. The rate constant of breakdown was equal to that observed for the phosphoenzyme formed in the presence of Ca2+. It is suggested that the rapidly decaying phosphoenzyme (and possibly both rapidly and slowly decaying species) are intermediates in the reaction cycle of Mg2+-dependent ATP hydrolysis of sarcoplasmic reticulum Ca2+-ATPase and may represent a bypass of Ca2+ activation by dimethyl sulfoxide.  相似文献   

13.
Enhanced fluorescence of the ATP analogue 2',3'-O-(2,4,6-trinitrocyclohexyldienylidine)adenosine 5'-triphosphate (TNP-ATP), bound to the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum, is closely related to phosphoenzyme levels (Bishop, J. E., Johnson, J. D., and Berman, M. C. (1984) J. Biol. Chem. 259, 15163-15171) and has an emission maximum consistent with decreased polarity of the TNP-ATP-binding site. The phosphoenzyme conformation responsible for increased nucleotide-binding site hydrophobicity has been studied by redistribution of phosphoenzyme intermediates following specific thiol group modification. N-Ethylmaleimide, in the presence of 50 microM Ca2+, 1 mM adenyl-5'-yl imidodiphosphate, pH 7.0, at 25 degrees C for 30 min, selectively modified the SH group essential for phosphoenzyme decomposition, which resulted in decreased ATPase activity, Ca2+ uptake, and a decrease in ATP-induced TNP-ATP fluorescence. Phosphorylated (Ca2+, Mg2+)-ATPase levels from [gamma-32P] ATP remained relatively unaffected (3.1 nmol/mg), but the ADP-insensitive fraction decreased from 56 to 15%. Phosphoenzyme levels from 32Pi were also decreased to the same extent as turnover, with equivalent loss of Pi-induced TNP-ATP fluorescence. The E1 to E2 transition, as monitored by the change in intrinsic tryptophan fluorescence, was unaffected. Modification of thiol groups of unknown function did not modify turnover-induced TNP-ATP fluorescence. It is concluded that the ADP-insensitive phosphoenzyme, E2-P, is responsible for enhanced TNP-ATP fluorescence. This suggests that the conformational transition, 2Ca2+outE1 approximately P----2Ca2+inE2-P, is associated with altered properties of the noncatalytic, or regulatory, nucleotide-binding site.  相似文献   

14.
Addition of up to 300 microM ATP in the presence of 2 M NaCl with MgCl2 to pig kidney Na+,K+-ATPase treated with N-[p-(2-benzimidazolyl)phenyl]maleimide seemed to be insufficient to saturate the rate of the fluorescence decrease. However, both the extent of the decrease and the amount of phosphoenzyme at a steady state were saturated below 20 microM ATP. Addition of Mg2+ with Na+ to the enzyme preincubated with 20 to 600 microM ATP gave nearly the same rate constant, which was below 50% of that obtained by adding 300 microM ATP to the Na+-form enzyme in the presence of Mg2+. High concentrations of ATP affected neither the rate of light-scattering change (Taniguchi, K. et al. (1986) J. Biol. Chem. 261, 3272-3281) after ADP-sensitive phosphoenzyme formation (E1P) nor that of the breakdown of E1P. A stoichiometric amount of [32P]Pi was liberated from [32P]E1P. The data suggested that ATP did not bind to E1P in such a way as to increase the extent of phosphorylation further or to accelerate dephosphorylation. The data also suggested that the reason for the large difference in the apparent affinity of ATP as evaluated from the rate and the extent of fluorescence change is the large dissociation constant for ATP of a Michaelis complex.  相似文献   

15.
Direct evidence for the occurrence of an ADP-sensitive phosphoenzyme of (K+ + H+)-ATPase, the proton-pumping system of the gastric parietal cell is presented. The enzyme is phosphorylated with 5 microM [gamma-32P]ATP in 50 mM imidazole-HCl (pH 7.0) and in the presence of 7-15 microM Mg2+. Addition of 5 mM ADP to this preparation greatly accelerates its hydrolysis. We have been able to establish this by stopping the phosphorylation with radioactive ATP, by adding 1 mM non-radioactive ATP, which leads to a slow monoexponential process of dephosphorylation of 32P-labeled enzyme. The relative proportion of the ADP-sensitive phosphoenzyme is 22% of the total phosphoenzyme. Values for the rate constants of breakdown and interconversion of the two phosphoenzyme forms have been determined.  相似文献   

16.
Human liver microsomal fractions exhibit ATP-supported Ca2+ uptake which is half-maximal at 7 X 10(-7) M free Ca2+ in the presence of oxalate. Ca2+ uptake is coupled to a Ca2+-stimulated ATPase activity, which is half-maximal at 4 X 10(-7) M free Ca2+. Catalysis involves formation of an Mr = 116,000 phosphoprotein with stability characteristics of an acylphosphate compound suggested to represent a phosphoryl protein intermediate of the Ca2+-ATPase. Phosphorylation is half-maximal at about 10(-6) M free Ca2+. The Mr = 116,000 protein is highly susceptible to proteolysis with trypsin. The phosphorylated active site was localized in an Mr = 58,000 primary tryptic fragment and in an Mr = 34,000 subfragment. Analyses on the mechanism of the Ca2+-ATPase suggest the following reaction sequence: formation of an ADP-reactive phosphoenzyme (Mr = 116,000) with bound Ca2+, which can transphosphorylate its Pi to ADP, giving rise to synthesis of ATP; reversible transformation of the ADP-reactive phosphoenzyme into an isomer without bound Ca2+, which cannot further react with ADP; hydrolytical cleavage, probably catalyzed by Mg2+, of the ADP-unreactive phosphoenzyme with liberation of Pi. Comparison with the Ca2+-transport ATPase in sarcoplasmic reticulum of skeletal muscle led us to suggest that the Mr = 116,000 Ca2+-ATPase belongs to the class of E1P . E2P-ATPases and might be operative as a Ca2+-transport ATPase at the level of the endoplasmic reticulum in human liver.  相似文献   

17.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle are able to accumulate Ca2+ or Sr2+ at the expense of ATP hydrolysis. Depending on the conditions used, vesicles loaded with Ca2+ can catalyze either an ATP in equilibrium Pi exchange or the synthesis of ATP from ADP and Pi. Both reactions are impaired in vesicles loaded with Sr2+. The Sr2+ concentration required for half-maximal ATPase activity increases from 2 microM to 60-70 microM when the Mg2+ concentration is raised from 0.5 to 50 mM. The enzyme is phosphorylated by ATP in the presence of Sr2+. The steady state level of phosphoenzyme varies depending on both the Sr2+ and Mg2+ concentrations in the medium. Phosphorylation of the enzyme by Pi is inhibited by both Ca2+ and Sr2+. In the presence of 2 and 20 mM Mg2+, half-maximal inhibition is attained in the presence of 4 and 8 microM Ca2+ or in the presence of 0.24 mM and more than 2 mM Sr2+, respectively. After the addition of Sr2+, the phosphoenzyme is cleaved with two different rate constants, 0.5-1.5 s-1 and 10-18 s-1. The fraction of phosphoenzyme cleaved at a slow rate is smaller the higher the Sr2+ concentration in the medium. Ca2+ inhibition of enzyme phosphorylation by Pi is overcome by the addition of ITP. This is not observed when Ca2+ is replaced by Sr2+.  相似文献   

18.
The ATPase of the sarcoplasmic reticulum is phosphorylated by ATP in the presence of Ca2+. A rapid phosphorylation was observed when the enzyme was preincubated with Ca2+ prior to the addition of 0.1 or 1 mM ATP. The rate of phosphorylation was decreased when Ca2+ was omitted from the preincubation medium and added with ATP when the reaction was started. The rate of phosphorylation by ATP was further decreased when Pi was included in the preincubation medium without Ca2+. In this case, the enzyme was phosphorylated by Pi during the preincubation. When Ca2+ and ATP were added, a burst of phosphorylation by ATP was observed in the initial 16 ms. In the subsequent incubation intervals, the phosphorylation by ATP was synchronous with the hydrolysis of the phosphoenzyme formed by Pi. The rate of hydrolysis of the phosphoenzyme formed by Pi was measured when either the Pi concentration was decreased 10 fold, or when Ca2+, ATP or ATP plus Ca2+ was added to the medium. Upon the single addition of Ca2+, the time for half-maximal decay was in the range 500--1000 ms. In all other conditions it was in the range 70--90 ms.  相似文献   

19.
(Na+ + K+)-ATPase from beef brain and pig kidney are slowly inactivated by chromium(III) complexes of nucleotide triphosphates in the absence of added univalent and divalent cations. The inactivation of (Na+ + K+)-ATPase activity was accompanied by a parallel decrease of the associated K+-activated p-nitrophenylphosphatase and a parallel loss of the capacity to form, Na+-dependently, a phosphointermediate from [gamma-32P]ATP. The kinetics of inactivation and of phosphorylation with [gamma-32P]CrATP and [alpha-32P]CrATP are consistent with the assumption of the formation of a dissociable complex of CrATP with the enzyme (E) followed by phosphorylation of the enzyme: formula: (see text). The dissociation constant of the CrATP complex of the pig kidney enzyme at 37 degrees C was 43 microM. The inactivation rate constant (k + 2 = 0.033 min-1) was in the range of the dissociation rate constant kd of ADP from the enzyme of 0.011 min-1. The phosphoenzyme was unreactive towards ADP as well as to K+. No hydrolysis of the native isolated phosphoenzyme was observed within 6 h under a variety of conditions, but high concentrations of Na+ reactivated it slowly. The capacity of the Cr-phosphoenzyme of 121 +/- 18 pmol/unit enzyme is identical with the capacity of the unmodified enzyme to form, Na+-dependently, a phosphointermediate. The Cr-phosphoenzyme behaved after acid denaturation like an acylphosphate towards hydroxylamine, but the native phosphoenzyme was not affected by it. ATP protected the enzyme against the inactivation by CrATP (dissociation constant of the enzyme ATP complex = 2.5 microM) as well as low concentrations of K+. CrATP was a competitive inhibitor of (Na+ + K+)-ATPase. It is concluded that CrATP is slowly hydrolyzed at the ATP-binding site of (Na+ + K+)-ATPase and inactivates the enzyme by forming an almost non-reactive phosphoprotein at the site otherwise needed for the Na+-dependent proteinkinase reaction as the phosphate acceptor site.  相似文献   

20.
In previous studies we had demonstrated that in the presence of 0.25 mM Cu2+ and 1.25 mM o-phenanthroline, cross-linking of the alpha-subunits of Na+ + K+)-dependent adenosine triphosphatase was induced by the addition of Na+ + ATP, and that the formation of the alpha,alpha-dimer was preceded by that of phosphoenzyme. The purpose of the present studies was the further evaluation of the role of phosphoenzyme in the process of cross-linking. Na+ + UTP did not induce cross-linking unless Mg2+ was also added. In contrast, Na+ + ATP-induced cross-linking did not require the addition of Mg2+. The different effects of ATP and UTP in the absence of added Mg2+ could be accounted for by the presence in the enzyme preparation of bound Mg2+ which supported enzyme phosphorylation by ATP but not by UTP. When the enzyme was phosphorylated by Pi, in the presence of Mg2 and ouabain, and the exposed to Cu2+ and o-phenanthroline, the alpha,alpha-dimer was obtained. Under these conditions, Na+ blocked both phosphorylation and cross-linking. These results indicate that it is the formation of phosphoenzyme per se that leads to conformational transitions favorable to cross-linking. They also suggest that Cu2+ and o-phenanthroline participate in the cross-linking reaction, but not in the phosphorylation reactions. In the digitonin-treated enzyme, Na+ and ATP induced the formation of phosphoenzyme, but not that of alpha,alpha-dimer. These findings indicate that in addition to phosphorylation, a proper orientation o alpha-subunits in an oligomer is also necessary for cross-linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号