首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
家蚕质多角体病毒(BmCPV)结构研究   总被引:6,自引:0,他引:6  
用负染和冷冻电镜技术以及计算机数据处理方法,研究了CPV2和空病毒的结构,完整病毒和空病毒的结构和生化组成比较表明,CPV具有单层衣壳结构,病毒的5种结构蛋白都位于该单层衣壳上。该单层衣壳按T=1的对称结构排列,在二十面体的顶点具有塔状突起。空病毒与完整病毒具有相同的衣壳结构,但内部结构却不相同。  相似文献   

2.
Cytoplasmic polyhedrosis virus (CPV) is unique among the double-stranded RNA viruses of the family Reoviridae in having a single capsid layer. Analysis by cryo-electron microscopy allows comparison of the single shelled CPV and orthoreovirus with the high resolution crystal structure of the inner shell of the bluetongue virus (BTV) core. This suggests that the novel arrangement identified in BTV, of 120 protein subunits in a so-called 'T=2' organization, is a characteristic of the Reoviridae and allows us to delineate structural similarities and differences between two subgroups of the family--the turreted and the smooth-core viruses. This in turn suggests a coherent picture of the structural organization of many dsRNA viruses.  相似文献   

3.
昆虫质型多角体病毒的研究进展   总被引:1,自引:0,他引:1  
贺倩  刘小侠  张青文 《昆虫知识》2010,47(5):834-840
质型多角体病毒(Cytoplasmic polyhedrosis virus,CPV)隶属呼肠孤病毒科Reoviridae质型多角体病毒属Cypovirus,通常基因组由10个节段双链RNA构成。RNA分子量为3~27u。根据病毒基因组dsRNA片段在聚丙烯酰胺或琼脂糖凝胶中电泳图谱的差异,目前CPV已被分为19个电泳型。不同于呼肠孤病毒科其它成员,CPV为单层衣壳,而不是常见的双层衣壳结构,衣壳蛋白主要由衣壳蛋白、大突起蛋白及塔式突起蛋白组成。大部分质型多角体病毒引起昆虫慢性疾病,造成寄主死亡或适应性降低。随着RNA病毒基因序列测定技术的成熟,质型多角体病毒的序列测定方面取得较大进展,目前GenBank核苷酸序列数据库中已经公布了家蚕Bombyx mori CPV电泳型1两个株系(H株和I株)、舞毒蛾Lymantria dispar CPV电泳型1、舞毒蛾CPV电泳型14及粉纹夜蛾Trichoplusia ni CPV电泳型全基因组序列,为该病毒的进化与起源的研究提供更多的遗传信息。本文从结构功能、侵染特点、基因组特点及应用前景等方面综述了昆虫质型多角体病毒的研究进展。  相似文献   

4.
5.
6.
昆虫质多角体病毒研究的若干新进展   总被引:6,自引:1,他引:6  
质多角体病毒隶属呼肠孤病毒科质多角体病毒属,病毒粒子为二十面体球形颗粒,具有3~5种结构蛋白,基因组由10或11个节段双链RNA构成。按病毒基因组RNA片段在聚丙烯酰胺或琼脂糖凝胶中电泳图谱的差异,将质多角体病毒分为15个电泳型。随着RNA病毒序列测定策略的逐步成熟与完善,质多角体病毒的序列测定方面取得一定的进展,家蚕质多角体病毒1的两个毒株(H株和I株),舞毒蛾质多角体病毒1和14,及粉纹夜蛾质多角体病毒15的基因组全序列得到了测定,但质多角体病毒的进化与起源的研究因缺乏足够的遗传信息仍受到限制。  相似文献   

7.
8.
Unlike the multishelled viruses in the Reoviridae, cytoplasmic polyhedrosis virus (CPV) is single shelled, yet stable and fully capable of carrying out functions conserved within Reoviridae. Here, we report a 3.1 ? resolution cryo electron microscopy structure of CPV and derive its atomic model, consisting of 60 turret proteins (TPs), 120 each of capsid shell proteins (CSPs) and large protrusion proteins (LPPs). Two unique segments of CSP contribute to CPV's stability: an inserted protrusion domain interacting with neighboring proteins, and an N-anchor tying up CSPs together through strong interactions such as β sheet augmentation. Without the need to interact with outer shell proteins, LPP retains only the N-terminal two-third region containing a conserved helix-barrel core and interacts exclusively with CSP. TP is also simplified, containing only domains involved in RNA capping. Our results illustrate how CPV proteins have evolved in a coordinative manner to economically carry out their conserved functions.  相似文献   

9.
Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus which is transmitted by blood-feeding gnats to wild and domestic ruminants, causing high morbidity and often high mortality. Partly due to this BTV has been in the forefront of molecular studies for last three decades and now represents one of the best understood viruses at the molecular and structural levels. BTV, like the other members of the Reoviridae family is a complex non-enveloped virus with seven structural proteins and a RNA genome consisting of 10 dsRNA segments of different sizes. In virus infected cells, three other virus encoded nonstructural proteins are synthesized. Significant recent advances have been made in understanding the structure–function relationships of BTV proteins and their interactions during virus assembly. By combining structural and molecular data it has been possible to make progress on the fundamental mechanisms used by the virus to invade, replicate in, and escape from, susceptible host cells. Data obtained from studies over a number of years have defined the key players in BTV entry, replication, assembly and egress. Specifically, it has been possible to determine the complex nature of the virion through three dimensional structure reconstructions; atomic structure of proteins and the internal capsid; the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell and the protein sequestration required for it; and the role of three NS proteins in virus replication, assembly and release. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.  相似文献   

10.
Bacteriophage phi6 is an enveloped dsRNA virus with a segmented genome. Phi6 specifically packages one copy of each of its three genome segments into a preassembled polymerase complex. This leads to expansion of the polymerase complex, minus and plus strand RNA synthesis, and assembly of the nucleocapsid. The phi6 in vitro assembly and packaging system is a valuable model for dsRNA virus replication. The structure of the nucleocapsid at 7.5 A resolution presented here reveals the secondary structure of the two major capsid proteins. Asymmetric P1 dimers organize as an inner T = 1 shell, and P8 trimers organize as an outer T = 13 laevo shell. The organization of the P1 molecules in the unexpanded and expanded polymerase complex suggests that the expansion is accomplished by rigid body movements of the P1 monomers. This leads to exposure of new potential RNA binding surfaces to control the sequential packaging of the genome segments.  相似文献   

11.
The polymerase complex of the enveloped double-stranded RNA (dsRNA) bacteriophage phi6 fulfils a similar function to those of other dsRNA viruses such as Reoviridae. The phi6 complex comprises protein P1, which forms the shell, and proteins P2, P4 and P7, which are involved in RNA synthesis and packaging. Icosahedral reconstructions from cryo-electron micrographs of recombinant polymerase particles revealed a clear dodecahedral shell and weaker satellites. Difference imaging demonstrated that these weak satellites were the sites of P4 and P2 within the complex. The structure determined by icosahedral reconstruction was used as an initial model in an iterative reconstruction technique to examine the departures from icosahedral symmetry. This approach showed that P4 and P2 contribute to structures at the 5-fold positions of the icosahedral P1 shell which lack 5-fold symmetry and appear in variable orientations. Reconstruction of isolated recombinant P4 showed that it was a hexamer with a size and shape matching the satellite. Symmetry mismatch between the satellites and the shell could play a role in RNA packaging akin to that of the portal vertex of dsDNA phages in DNA packaging. This is the first example of dsRNA virus in which the structure of the polymerase complex has been determined without the assumption of icosahedral symmetry. Our result with phi6 illustrates the symmetry mismatch which may occur at the sites of RNA packaging in other dsRNA viruses such as members of the Reoviridae.  相似文献   

12.
13.
14.
15.
Rotaviruses are the leading cause of severe infantile gastroenteritis worldwide. These viruses are large, complex icosahedral particles consisting of three concentric capsid layers enclosing a genome of eleven segments of double-stranded RNA (dsRNA). The amino terminus of the innermost capsid protein VP2 possesses a nonspecific single-stranded RNA and dsRNA binding activity, and the amino terminus is also essential for the incorporation of the polymerase enzyme VP1 and guanylyltransferase VP3 into the core of the virion. Biochemical and structural studies have suggested that VP2, and especially the amino terminus, appears to act as a scaffold for proper assembly of the components of the viral core. To locate the amino terminus of VP2 within the core, we have used electron cryomicroscopy and image reconstruction to determine the three-dimensional structures of recombinant virus-like particles that contain either full-length or amino-terminal-deleted forms of VP2 coexpressed with the intermediate capsid protein VP6. A comparison of these structures indicates two significant changes along the inner surface of VP2 in the structure lacking the amino terminus: a loss of mass adjacent to the fivefold axes and a redistribution of mass along the fivefold axes. Examination of the VP2 layer suggests that the proteins are arranged as dimers of 120 quasi-equivalent molecules, with each dimer extending between neighboring fivefold axes. Our results indicate that the amino termini of both quasi-equivalent VP2 molecules are located near the icosahedral vertices.  相似文献   

16.
To begin a successful infection, viruses must first cross the host cell plasma membrane, either by direct fusion with the membrane or by receptor-mediated endocytosis. After release into the cytoplasm those viruses that replicate in the nucleus must target their genome to that location. We examined the role of cytoplasmic transport of the canine parvovirus (CPV) capsid in productive infection by microinjecting two antibodies that recognize the intact CPV capsid into the cytoplasm of cells and also by using intracellular expression of variable domains of a neutralizing antibody fused to green fluorescence protein. The two antibodies tested and the expressed scFv all efficiently blocked virus infection, probably by binding to virus particles while they were in the cytoplasm and before entering the nucleus. The injected antibodies were able to block most infections even when injected 8 h after virus inoculation. In control studies, microinjected capsid antibodies did not interfere with CPV replication when they were coinjected with an infectious plasmid clone of CPV. Cytoplasmically injected full and empty capsids were able to move through the cytosol towards the nuclear membrane in a process that could be blocked by nocodazole treatment of the cells. Nuclear transport of the capsids was slow, with significant amounts being found in the nucleus only 3 to 6 h after injection.  相似文献   

17.
18.
The characteristics of a rotaviruslike (SBR) virus isolated from striped bass (Morone saxatilis) were examined following purification of viruses from infected cell cultures. Virions had a double-layered capsid of icosahedral symmetry and a diameter of 75 nm. Purified viruses contained five polypeptides ranging in molecular mass from 130 to 35 kDa. None of the structural proteins were glycosylated. Treatment with EDTA did not remove the outer capsid. By using enzymes and a chaotropic agent, it was shown that VP5 was the most external polypeptide. The genome of SBR virus was composed of 11 segments of double-stranded RNA (dsRNA). The electrophoretic pattern of the dsRNA of SBR virus was different from that of reovirus type 1 (Lang) and rotavirus (SA11) dsRNA. The SBR virus was compared with reovirus type 1 and SA11 virus by RNA-RNA blot hybridization. There was no cross-hybridization between any of the genome segments of the SBR, reovirus type 1, or SA11 viruses. Antigenic comparison of SBR virus and SA11 virus by cross-immunoprecipitation and cross-immunofluorescence tests did not show any relationship. These results suggest that SBR virus could represent a new genus within the family Reoviridae.  相似文献   

19.
Double-stranded RNA viruses have a virion-associated RNA-dependent RNA polymerase activity which is involved in such critical steps of viral assembly as genome packaging and minus strand synthesis. In vitro studies of a bacterial dsRNA virus, ø6, and a yeast virus, L-A, have shed light on capsid formation as well as on the protein/RNA interactions and packaging of the viral genomes. In the ø6 system, an empty dodecahedral polymerase complex (procapsid) composed of four protein species is formed without the help of other viral proteins or RNA. This particle packages positive sense viral RNA genome segments in an ATP dependent reaction. The presence of all rNTPs allows the synthesis of complementary (-) strands within the particle. Self-assembly of an additional protein shell (composed of protein P8) around this particle takes place in the presence of Ca2+ ions. In vivo, these nucleocapsids obtain an envelope while still residing in the cell cytoplasm. L-A, in contrast, is not known to make a prohead structure. The Pol domain of L-A's Gag-Pol fusion protein is necessary for packaging of the (+) strand RNA and probably actually binds to the (+) strand packaging site (a stem-loop with a protruding A) insuring its packaging while the Gag domain primes polymerization of the coat protein. N-Acetylation of Gag by the host MAK3 N-acetyltransferase is necessary for proper assembly, and the ratio of Gag-Pol/Gag, determined by the efficiency of - 1 ribosomal frameshifting, is critical for propagation of the M1 satellite dsRNA.  相似文献   

20.
Virus-like particles containing the L (P1)-species of double-stranded RNA (dsRNA) were isolated from Saccharomyces cerevisiae, and the translational activity of the virus-like particle-derived dsRNA was analyzed in the wheat germ cell-free system. Denaturation of the dsRNA immediately prior to in vitro translation resulted in the synthesis of one major and at least three minor polypeptides, whereas undenatured dsRNA, as expected, did not stimulate [35S]methionine incorporation into polypeptides, but actually slightly inhibited endogenous activity. The major in vitro translation product of the denatured L-dsRNA was shown to be identical with the major L-dsRNA containing virus-like particle capsid polypeptide on the basis of three criteria: co-electrophoresis on sodium dodecyl sulfate polyacrylamide gels, immunoprecipitation, and tryptic peptide analysis. We have therefore established that the L-dsRNA genome encodes the major virus-like particle capsid polypeptide. This result adds considerable support to the hypothesis that the L-dsRNA genome acts as a helper genome to the smaller (1.6 x 10(6) dalton) M-dsRNA genome in killer strains of yeast by providing the M-dsRNA containing virus-like particles with their major coat protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号