首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat submandibular gland nuclei incubated with γ-32P-ATP incorporated the label into histone and non-histone phosphoproteins. The latter was the predominantly radioactive fraction. After a single injection of isoproterenol (Ipr), the incorporation of 32P into non-histone phosphoproteins decreased during the first few hours, followed by an increase at 4 h which reached its peak at 24 h at a higher level compared with normal controls. The values returned to the control level at 40 h after the injection. The changes were reflected in the initial rates as well as the total level of incorporation of 32P into the phosphoproteins. Temporally, the onset of increase in the phosphorylation of non-histone phosphoproteins appeared to precede that in RNA synthesis, although peak activity of the phosphorylation coincided with the peak of RNA synthesis. The non-histone phosphoproteins which depicted maximal changes in response to Ipr were further characterized as phenol-soluble acidic phosphoproteins. The phosphorylation of histone phosphoproteins also declined after the injection of Ipr, but the recovery of the rate of phosphorylation was not observed until 16 h after the injection, reaching the control levels at 24 h. Treatment of rats with actinomycin D or cycloheximide, prior to Ipr, abolished the increase in phosphorylation of non-histone phosphoproteins observed at 24 h after Ipr. Further, the changes in the phosphorylation of nuclear phosphoproteins induced by Ipr were blocked by prior treatment of the animals with dichloroisoproterenol. The results suggest that the phosphorylation of the non-histone phosphoproteins plays an important role in the events controlling the synthesis of RNA which precedes the replication of DNA and cell. In addition, the regulation of the metabolism of nuclear phosphoproteins may be controlled through a function of the cytoplasmic membrane.  相似文献   

2.
The chemically inert trivalent ion cobalt(III) hexaammine, Co3+(NH3)6, was found to exert polyamine-like effects in enhancing certain cyclic nucleotide-independent protein kinase reactions catalyzed by nuclear enzyme preparations from rat ventral prostate or liver. At 1 mM, Co3+(NH3)6 stimulated chromatin- and also non-histone-protein-associated kinase activities with partially dephosphorylated phosvitin as substrate by 38% and 72% respectively, whereas chromatin-associated kinase-catalyzed phosphorylation of lysine-rich histones was not affected under the same conditions. 32P incorporation (from γ-32P-ATP) into endogenous protein substrates of chromatin or non-histone protein fractions catalyzed by their erdogencus kinase activity was increased by 47% and 153%, respectively. These effects of Co3+(NH3)6 were similar to those produced by 1mM spermine. Autoradiographic analysis of endogenous 32P-labelled nonhistone proteins revealed similar enhancements of the phosphorylation of several of the same proteins, induced by 1mM spermine or 1 mM Co3+(NH3)6 or 2mM spermidine. The stimulatory actions of polyamines or Co3+(NH3)6 were not mimicked by raising the ionic strength by addition of comparable concentrations of NaCl. The effects of 1 mM spermine and of 1 mM Co3+(NH3)6 tested separately were not additive. Phosphorylation of lysine-rich histones by beef heart cyclic AMP-dependent protein kinase was not affected by polyamines or Co3+(NH3)6 Various findings hint that the enhancement of cyclic nucleotide-independent kinase-catalyzed phosphorylation of certain protein substrates by spermidine, spermine and Co3+(NH3)6 is primarily due to interaction of these cations with appropriate protein substrates affecting their conformational status. Further, these effects of polyamines may be a reflection of their cationic charge properties rather than being dependent on any particular conformations assumed by the polyamines.  相似文献   

3.
Addition of polyamines to isolated nuclei increases the rate and extent of phosphate incorporation from ATP into non-histone proteins several-fold. Similar results are obtained when histones are added to phosphorylating nuclei or when nuclei are incubated with DNAase prior to the addition of ATP. Electrophoretic analysis of the reaction products in SDS polyacrylamide gels reveals that specific non-histone proteins are preferentially phosphorylated in the presence of polyamines, some of which appear to be the same as in the presence of histones or DNAase. Removal of protein-bound phosphate during prolonged incubation of nuclei occurs with the same kinetics in the presence or absence of polyamines. Our results suggest that polyamines and histones stimulate nuclear protein phosphorylation by rendering additional phosphate acceptors accessible to the kinases.  相似文献   

4.
Studies are presented on the influence of polyamines on prostatic chromatin- and non-histone-protein-associated protein kinase reactions involving both exogenous and endogenous substrates. The activities toward the model acidic protein substrate, dephosphophosvitin, were maximal at 160--200mM-NaCl (or -KCl or -NH4Cl). Under these conditions, spermidine and spermine added in concentrations up to 2mM were essentially without effect. However, without addition of NaCl to the medium, marked stimulation of these reactions was elicited by these polyamines at 1--2mM concentrations. The stimulatory effects were not due to non-specific changes in the ionic strength or to substitution of spermine for Mg2+, as maximal stimulation by 1 mM-spermine was observed only at optimal (2--4mM) Mg2+ concentrations. Qualitatively similar effects of polyamines were observed with enzyme preparations from the prostates of castrated rats, and with chromatin and non-histone-protein preparations from other tissues besides ventral prostate. When phosphorylation of endogenous non-histone proteins of the chromatin was measured, spermine stimulated both the initial rates and the final extent of transphosphorylation, even in the presence of optimal concentration of NaCl. By contrast, spermine or spermidine had no effect on the chromatin- and non-histone-protein-associated protein kinase reactions determined with lysine-rich histones as substrates. Chemically NN-dimethylated dephosphophosvitin was a less active substrate for the chromatin-associated protein kinase, but its phosphorylation was more markedly stimulated by spermine in comparison with unmodified dephosphophosvitin. These observations hint that the polyamine stimulations of the various protein kinase reactions may be due to effects on the conformations of the non-histone protein substrates rather than on the kinases themselves.  相似文献   

5.
The activity of endogenous nuclear protein kinases has been probed in an vitro assay system of isolated nuclei from Chironomus salivary gland cells. The phosphorylation of a set of seven prominent rapidly phosphorylated non-histone proteins and of histones H3, H2A and H4 was analyzed using ATP or GTP as phosphoryl donor and heparin as protein kinase effector. The core histones H2A and H3 both incorporate 32P from [gamma-32P]ATP as well as from [gamma-32P]GTP but their phosphorylation is differentially affected by heparin. The phosphorylation of H2A is blocked by heparin while that of H3 is even stimulated in the presence of heparin when ATP is used as phosphate donor. H4 is unable to incorporate phosphate groups from GTP but its ATP-based phosphorylation is heparin sensitive. Of the non-histone protein kinase substrates, we could only detect two, the 44-kDa and 115-kDa proteins, which are heparin sensitive with either ATP or GTP and, thus, strictly meet the criteria for casein kinase type II-specific phosphorylation. The investigated histones and non-histone proteins can be grouped into three broad categories on the basis of their phosphorylation properties. (A) Proteins very likely affected by casein kinase NII. (B) Proteins phosphorylated by strictly ATP-specific protein kinases. (C) Proteins phosphorylated by ATP as well as GTP utilizing protein kinase(s) other than casein NII. Category B proteins can be subdivided into proteins phosphorylated in a heparin-resistant (B1) and heparin-sensitive (B2) manner. The phosphorylation of category C proteins may be heparin sensitive with ATP only (C1), heparin sensitive with GTP only (C2), heparin insensitive with both ATP and GTP (C3) or stimulated by heparin (C4).  相似文献   

6.
Phosphorylation of proteins in Clostridium thermohydrosulfuricum.   总被引:4,自引:3,他引:1       下载免费PDF全文
Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by [gamma-32P]ATP of several endogenous proteins with Mrs between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of Mrs 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10 microM fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 microM brain (but not spinach) calmodulin. Polyamines, including the "odd" polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by 32Pi. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro.  相似文献   

7.
Phosphorylation of the proteins of human cytomegalovirus (CMV) virions, noninfectious enveloped particles (NIEPs), and dense bodies was investigated. Analyses of particles phosphorylated in vivo showed the following. Virions contain three predominant phosphoproteins (i.e., basic phosphoprotein and upper and lower matrix proteins) and at least nine minor phosphorylated species. NIEPs contain all of these and one additional major species, the assembly protein. Dense bodies contain only one (i.e., lower matrix) of the predominant and four of the minor virion phosphoproteins. Two-dimensional (charge-size) separations in denaturing polyacrylamide gels showed that the relative net charges of the predominant phosphorylated species ranged from the basic phosphoprotein to the more neutral upper matrix protein. In vitro assays showed that purified virions of human CMV have an associated protein kinase activity. The activity was detected only after disrupting the envelope; it had a pH optimum of approximately 9 to 9.5 and required a divalent cation, preferring magnesium to manganese. In vitro, this activity catalyzed phosphorylation of the virion proteins observed to be phosphorylated in vivo. Peptide comparisons indicated that the sites phosphorylated in vitro are a subset of those phosphorylated in vivo, underscoring the probable biological relevance of the kinase activity. Casein, phosvitin, and to a minor extent lysine-rich histones served as exogenous phosphate acceptors. Arginine-rich and lysine-rich histones and protamine sulfate, as well as the polyamines spermine and spermidine, stimulated incorporation of phosphate into the endogenous viral proteins. Virions of all human and simian CMV strains tested showed this activity. Analyses of other virus particles, including three intracellular capsid forms (i.e., A, B, and C capsids), NIEPs, and dense bodies, indicated that the active enzyme was not present in the capsid. Rate-velocity sedimentation of disrupted virions separated the protein kinase activity into two fractions: one that phosphorylated exogenous casein and another that phosphorylated primarily the endogenous virion proteins.  相似文献   

8.
The phosphate content of rat thymus histones was determined. As expected for a replicating tissue, histones 1 and 2B were more phosphorylated and had higher 32P uptakes than did histones from resting liver nuclei; the other histones all showed 32P uptake, but the phosphate content and uptake of histone 2A was about half that for liver histone 2A. When thymus nuclei were incubated in a slightly hypo-osmotic medium, non-histone proteins and phosphorylated histones were released into solution; this was enhanced if ATP was present in the medium. [gamma-32P]ATP was incorporated into non-histone proteins, including protein P1, and into the ADP-ribosylated form of histone 1; negligible 32P was incprporated into the other, bound, histones. Histones 1 and 2B added to the incubation medium were extensively, and histones 2A and 4 slightly, phosphorylated. Histones released by increasing the ionic strength of the medium were phosphorylated. Added lysozyme and cytochrome c were neither bound nor phosphorylated, but added non-histone protein P1 was phosphorylated, causing other histones to be released from the nuclei, especially histones 2A and 3. The released histones were phosphorylated. gamma-Irradiation decreased 32P uptake into the non-ADP-ribosylated histones 1 and 4; phosphorylation of histone 1 in vitro was unaffected. The importance of non-histone proteins, ATP availability and nuclear protein kinases to the control of histone phosphorylation in vivo is discussed.  相似文献   

9.
We here studied the protein kinase activity and in vitro phosphorylable sites of non-histone nuclear proteins, 0.4 M NaCl extracts (mostly chromosomal proteins) from chick embryo fibroblasts (CEF), infected or not with a Schmidt Ruppin strain subgroup A of Rous sarcoma virus (RSV).The infection and transformation of chick fibroblasts by RSV induced an increase in kinase activity and endogenous phosphorylation of non-histone chromosomal (NHC) proteins. The stimulation, by a change of medium, of the proliferation of dense cultures of normal chick fibroblasts also induced an increase in the kinase activity and endogenous phosphorylation of NHC proteins.However, two-dimensional gel electrophoresis of the 32P-phosphorylated proteins showed that stimulation due to a change of medium and that due to the expression of transformation were very different. The stimulation by a change of medium increased to a greater or lesser extent the phosphorylation of the different NHC proteins, with no fundamental variations in the pattern of protein phosphorylation. In contrast, RSV infection induced significant changes in the pattern of protein phosphorylation. One of the most striking feature was the large increase of amount and phosphorylation of high molecular weight (HMW) proteins in particular of phosphoproteins having an evaluated molecular weight (MW) of 78 K and 82 K and pI>8.2.The percent of phosphotyrosine residues in NHC proteins was clearly increased when the proteins were extracted from transformed cells instead of normal cells. But the alkaline treatment of two-dimensional gel electrophoresis indicated that the 80 K phosphoproteins did not contain phosphotyrosine residues, and thus cannot be considered as substrates for pp60src kinase.  相似文献   

10.
Purified rat liver nuclei were incubated in vitro with [3H]NAD. Altered patterns of ADP-ribosylation of nuclear proteins occurred with 1 mM spermidine or spermine with the latter polyamine causing the greater change. Spermine treated nuclei showed a two-fold increase in ADP-ribose incorporation into H1 histones and a decrease in the other histones. Likewise, the incorporation into the more acidic non-histone nuclear proteins was greater with spermine than spermidine. These results suggest that polyamines may exert a regulatory function by altering the pattern of ADP-ribosylation of both histone and non-histone nuclear proteins.  相似文献   

11.
Polyamines are known to have a role in cell proliferation, differentiation, and protein synthesis. During pregnancy, major changes in polyamine levels occur in maternal serum, amniotic fluid, and placental tissue. Polyamine-activated phosphorylation has recently been proposed as a mechanism by which polyamines may regulate metabolic processes in target tissues. Polyamine-activated protein phosphorylation has not been studied in placenta. Homogenate membrane and cytosol fractions from human placenta were subjected to an endogenous protein phosphorylation assay using [gamma-32P]ATP in the presence and absence of the polyamines, spermine and spermidine, and the diamine, putrescine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, spermine (10(-3) M) significantly (P less than 0.001) stimulated 32P incorporation into phosphoproteins having molecular weights of 55,000 and 105,000. At this concentration spermidine and putrescine failed to stimulate phosphorylation. Half-maximal 32P incorporation was observed with 3.7 +/- 1.25 X 10(-4) M spermine. Polylysine enhanced the phosphorylation of phosphoproteins of the same molecular weight as those enhanced by spermine. Heparin and high Mg2+ inhibited spermine-induced phosphorylation. cAMP and Ca2+ did not stimulate phosphorylation of the spermine-dependent phosphoproteins. Spermine, however, acted as an antagonist for cAMP-dependent phosphorylation of a Mr 45,000 phosphoprotein.  相似文献   

12.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems.  相似文献   

13.
In addition to its known effect in suppressing the deacetylation of the nucleosomal core histones, sodium butyrate in the concentration range 0.5 to 15 mM causes a selective inhibition of [32P]phosphate incorporation into histones H1 and H2A of cultured HeLa S3 cells. No commensurate general inhibition of phosphorylation is seen in the non-histone nuclear proteins of butyrate-treated cells, but phosphorylation patterns are altered and 32P-uptake may be stimulated, as well as inhibited, depending upon the protein fraction analyzed. The degree of inhibition of histone phosphorylation in intact cells increases progressively as the butyrate concentration is raised from 0.5 to 15 mM. The effect is time-dependent and fully reversible. Butyrate has no effect on the kinetics of phosphate release from previously phosphorylated histones of cultured cells, nor does it significantly alter the rate of dephosphorylation of 32P-labeled histone H1 by endogenous phosphatases in vitro. Despite the suppression of [32P]phosphate incorporation into histones H1 and H2A of butyrate-treated cells, Na-butyrate does not inhibit the in vitro activities of either type I or type II cyclic AMP-dependent protein kinases, or the cAMP-independent H1 kinase associated with cell cycle progression. This suggests that the butyrate effect on histone phosphorylation in vivo is indirect and may involve an alteration in substrate accessibility or a modulation of systems affecting kinase activities. The poly(ADP)-ribosylation of HeLa histones is not inhibited by 5 mM Na-butyrate. Cells exposed to butyrate show an impaired methylation of lysine and arginine residues in their histones and nuclear hnRNP particles, respectively.  相似文献   

14.
A low salt-soluble, diffusible fraction of meat was separated into basic, neutral and acidic fractions. Investigations were then conducted on the reaction of each fraction with nitrite and on the recovery of the added nitrite.

The basic fraction shared the lowest ability to decompose nitrite and had 88% recovery of added nitrite-N. Hypoxanthine was one of the main components that affected the recovery in the basic fraction. In the neutral fraction, 42% of nitrite was decomposed, and the recovery of the nitrite was 107%. In the acidic fraction, more than 80% of nitrite was decomposed and 30% was converted to unidentified-N compounds. Among endogenous acidic substances tested, cysteic acid showed the highest ability to decompose nitrite, accompanying the production of unidentified-N compounds.  相似文献   

15.
The level of endogenous protein phosphorylation in non-histone chromosomal and ribosomal wash proteins is 7--10 times greater in SV40-transformed rat cells than in untransformed parental cells. Protein kinase activity in these proteins was fractionated by either phosphocellulose or DEAE-cellulose chromatography. One major and one minor component were detected in non-histone proteins and only one component in ribosomal wash proteins when the activity in each fraction was measured with an exogenous substrate, casein. These enzymes prefer casein to whole histone as substrate and are cyclic AMP-independent. The enzyme activity in a major peak of non-histone proteins and in ribosomal wash proteins measured with casein as substrate is 3 times greater in transformed cells than in untransformed cells, whereas pH optimum, cation requirements and apparent Km values for casein and ATP are identical or very similar in the two cell types. No significant phosphatase was detected in non-histone and ribosomal wash proteins from the two types of cell. The patterns of endogenous protein phosphorylation in these protein fractions analysed by gel electrophoresis are significantly different between these cells. These results suggest that the high level of endogenous protein phosphorylation in non-histone and ribosomal wash proteins from SV40-transformed cells is caused mainly by the increased activity of protein kinase and the nature of protein substrates.  相似文献   

16.
To ascertain the activity and substrate specificity of nuclear protein kinases during various stages of the cell cycle of HeLa S3 cells, a nuclear phospho-protein-enriched sample was extracted from synchronised cells and assayed in vitro in the presence of homologous substrates. The nuclear protein kinases increased in activity during S and G2 phase to a level that was twice that of kinases from early S phase cells. The activity was reduced during mitosis but increased again in G1 phase. When the phosphoproteins were separated into five fractions by cellulose-phosphate chromatography each fraction, though not homogenous, exhibited differences in activity. Variations in the activity of the protein kinase fractions were observed during the cell cycle, similar to those observed for the unfractionated kinases. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the proteins phosphorylated by each of the five kinase fractions demonstrated a substrate specificity. The fractions also exhibited some cell cycle stage-specific preference for substrates; kinases from G1 cells phosphorylated mainly high molecular weight polypeptides, whereas lower molecular weight species were phosphorylated by kinases from the S, G2 and mitotic stages of the cell cycle. Inhibition of DNA and histone synthesis by cytosine arabinoside had no effect on the activity or substrate specificity of S phase kinases. Some kinase fractions phosphorylated histones as well as non-histone chromosomal proteins and this phosphorylation was also cell cycle stage dependent. The presence of histones in the in vitro assay influenced the ability of some fractions to phosphorylate particular non-histone polypeptides; non-histone proteins also appeared to affect the in vitro phosphorylation of histones.  相似文献   

17.
Water-soluble chromatin from rat submandibular gland nuclei was isolated, and had a DNA: RNA:protein ratio of 8:1:20. The spectral properties of this preparation were similar to those described for chromatins from other tissues. The rat submandibular gland chromatin possessed protein phosphokinase activity. It was able to incorporate 32P from [γ-32P]-ATP into chromatin proteins, and into dephospho-phosvitin. The chromatin-associated protein phosphokinase activity (measured with dephospho-phosvitin as substrate) required Mg2+, Na+ or K+ and dithiothreitol for optimal activity. A single injection of isoproterenol influenced the activity of this enzyme system, so that it was decreased at 2 h, showed a transient increase at 4 h, and a large increase at 10–16 h after the injection. This event appears to precede the increase in ribosomal RNA induced by Ipr [13]. By 48 h the chromatin-associated protein kinase returned to the normal control levels. These changes appeared to be commensurate with the corresponding alterations in the non-histone acidic protein complement of these chromatins. Actinomycin D or cycloheximide, when administered 30 min prior to isoproterenol, blocked the increase in chromatin-associated protein kinase at 4 as well as 10 h after the injection of isoproterenol. Injection of pilocarpine did not influence the chromatin-associated protein phosphokinase activity. Dichloroisoproterenol appeared to be antagonistic to the influence of isoproterenol in mediating changes in chromatin-associated protein kinase. The results suggest that the isoproterenol-induced increase in chromatin-bound protein phosphokinase which precedes the increase in RNA synthesis is related to the eventual onset of DNA synthesis in rat submandibular gland stimulated by isoproterenol. The chromatin-bound protein phosphokinase activity (or activities) may have a regulatory role on gene action, mediated through the control of phosphorylation of nuclear non-histone acidic proteins [26].  相似文献   

18.
ADP-ribosylation in permeable HeLa S3 cells   总被引:2,自引:0,他引:2  
ADP-ribosylation in permeabilized metaphase and interphase cells using [32P]NAD at pH 8.0 have been compared. Incorporation into trichloroacetic acid insoluble material was 4-5-times greater in metaphase cells. 17-22% was in the soluble fraction which contained material released from the cells, 16-22% in the 0.2 M HCl extract (histones) of the cell ghosts and the remaining activity in the residual fraction. Fractions were analyzed using dodecylsulphate/polyacrylamide gel electrophoresis at pH 6.0. The soluble fractions from metaphase and interphase cells exhibited three common unidentified ADP-ribosylated proteins corresponding to 78 000, 54 000 and 36 000 Da. In addition metaphase cells contained several other ADP-ribosylated proteins not present in interphase cells. The 0.2 M HCl extracts gave from metaphase cells radioactivity in the 32 000-39 000-Da region suggesting ADP-ribosylation of histone H1 with up to 10 residues of ADP-ribose and in the 17 000-20 000-Da region indicating ADP-ribosylation of core histones. The pattern of ADP-ribosylation of core histone in metaphase and interphase cells was qualitatively similar whereas the number of ADP-ribose residues per H1 molecule was higher in metaphase cells. The residual fraction contained free poly(ADP-ribose) and oligo(ADP-ribose). The results do not lend support to a special function of ADP-ribosylated histones in the mitotic event while certain ADP-ribosylated non-histone proteins may be specific for metaphase cells.  相似文献   

19.
In liver regeneration or neoplastic transformation, phosphorylation of nuclear proteins is stimulated. In the regenerating liver all main histone fractions are involved in this process. The type of histone phosphorylated seems to be dependent on the position of the partially synchronized cells within the generation cycle. At a time when most cells are exhibiting maximum HnRNA-synthesis, histone F2a2 belongs to those fractions with highly stimulated phosphate incorporation. Phosphorylation of this fraction alone is stimulated by cyclic AMP in parallel to a stimulation of HnRNA-synthesis. The preneoplastic liver is characterized by oscillating phosphorylation and dephosphorylation reactions of nearly all histone fractions during the first days of N-nitroso-diethylamine administration. After 2 months of carcinogen feeding a 50-150% stimulation of the phosphorylation of Fl subfractions is observed. The phosphate content of the other histones, however, has returned to the original level. A series of further proteins, isolated together with the histones, show very similar phosphorylation characteristics. These proteins are mostly of non-histone origin. It is suggested that some of them are responsible for the transport of RNA with messenger properties within the cell.  相似文献   

20.
To study the structure and function of the cell nucleus, a library of 170 monoclonal antibodies was produced to nuclear antigens from 3-6 h old Drosophila embryos. In preparation for immunization, nuclei were separated, at neutral pH and in the presence of polyamines, into two fractions containing either urea-soluble non-histone nuclear proteins or histones plus small quantities of non-histone proteins complexed to DNA. The antibodies were characterized in a rapid, indirect immunofluorescent assay employing cultured Drosophila cells (Schneider's line 2). Low backgrounds and high specific fluorescence were achieved in this assay by purifying the rhodamine-labelled second antibody on a polystyrene resin and washing the cells with optimal concentrations of detergents. The assay categorized antigens according to their cellular locations: in nuclei, in nuclei plus cytoplasm, or primarily in cytoplasm. A subset of nuclear antigens reacted specifically with the nuclear envelope. In addition, some antibodies were characterized by their reactions with polytene chromosomes. The cultured cell assay provides a new, efficient method for expanding this antibody library. The monoclonal antibodies in the library now provide highly specific tools for investigating structural nuclear proteins and proteins that may be regulatory during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号