首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D L Rimm  T D Pollard 《Gene》1989,75(2):323-327
Production of eukaryotic proteins in Escherichia coli has become rather simple since commercially available bacteriophage and plasmid vector systems allow investigators to select the optimal system for their particular problem. A common question is which system to use to produce the largest quantity of soluble recombinant protein with minimal, if any, bacterial protein fused to it. We have constructed a new set of plasmid vectors that produce large amounts of a fusion proteins that contain less than 25 amino acids of bacterial protein. We started with pATH-1, a plasmid expression vector comprised of the trpEp promoter and 37 kDa of the TrpE protein followed by a M13mp13 multiple cloning site for insertion of sequences to be expressed. We deleted the majority of the eukaryotic trpE sequence to produce a multiple frame, multiple enzyme cloning site, plasmid expression vector set called pRX. Transformation of E. coli CAG-456 (Baker et al., 1984) with this vector with an Acanthamoeba myosin tail sequence inserted in the correct frame yields a fusion protein that represents 45% of the total soluble protein. We have produced and purified 100 mg of this Acanthamoeba myosin-II fusion protein per liter of cell suspension.  相似文献   

2.
For proteins of higher eukaryotes, such as plants, which have large genomes, recombinant protein expression and purification are often difficult. Expression levels tend to be low and the expressed proteins tend to misfold and aggregate. We tested seven different expression vectors in Escherichia coli for rapid subcloning of rice genes and for protein expression and solubility levels. Each expressed gene product has an N-terminal fusion protein and/or tag, and an engineered protease site upstream of the mature rice protein. Several different fusion proteins/tags and protease sites were tested. We found that the fusion proteins and the protease sites have significant and varying effects on expression and solubility levels. The expression vector with the most favorable characteristics is pDEST-trx. The vector, which is a modified version of the commercially available expression vector, pET-32a, contains an N-terminal thioredoxin fusion protein and a hexahistidine tag, and is adapted to the Gateway expression system. However, addition of an engineered protease site could drastically change the expression and solubility properties. We selected 135 genes corresponding to potentially interesting rice proteins, transferred the genes from cDNAs to expression vectors, and engineered in suitable protease sites N-terminal to the mature proteins. Of 135 genes, 131 (97.0%) could be expressed and 72 (53.3%) were soluble when the fusion proteins/tags were present. Thirty-eight mature-length rice proteins and domains (28.1%) are suitable for NMR solution structure studies and/or X-ray crystallography. Our expression systems are useful for the production of soluble plant proteins in E. coli to be used for structural genomics studies.  相似文献   

3.
The enteric bacterium Escherichia coli is the most extensively used prokaryotic organism for production of proteins of therapeutic or commercial interest. However, it is common that heterologous over-expressed recombinant proteins fail to properly fold resulting in formation of insoluble aggregates known as inclusion bodies. Complex systems have been developed that employ simultaneous over-expression of chaperone proteins to aid proper folding and solubility during bacterial expression. Here we describe a simple method whereby a protein of interest, when fused in frame to the E. coli chaperones DnaK or GroEL, is readily expressed in large amounts in a soluble form. This system was tested using expression of the mouse prion protein PrP, which is normally insoluble in bacteria. We show that while in trans over-expression of the chaperone DnaK failed to alter partitioning of PrP from the insoluble inclusion body fraction to the soluble cytosol, expression of a DnaK–PrP fusion protein yielded large amounts of soluble protein. Similar results were achieved with a fragment of insoluble Varicella Zoster virus protein ORF21p. In theory this approach could be applied to any protein that partitions with inclusion bodies to render it soluble for production in E. coli.  相似文献   

4.
Many proteins that accumulate in the form of insoluble aggregates when they are overproduced in Escherichia coli can be rendered soluble by fusing them to E. coli maltose binding protein (MBP), and this will often enable them to fold in to their biologically active conformations. Yet, although it is an excellent solubility enhancer, MBP is not a particularly good affinity tag for protein purification. To compensate for this shortcoming, we have engineered and successfully tested Gateway destination vectors for the production of dual His6MBP-tagged fusion proteins in the cytoplasm and periplasm of E. coli. The MBP moiety improves the yield and solubility of its fusion partners while the hexahistidine tag (His-tag) serves to facilitate their purification. The availability of a vector that targets His6MBP fusion proteins to the periplasm expands the utility of this dual tagging approach to include proteins that contain disulfide bonds or are toxic in the bacterial cytoplasm.  相似文献   

5.
Expression of recombinant proteins in bacteria has facilitated the characterization of many gene products. However, the biochemical characterization of recombinant proteins is limited since the bacterially expressed proteins are often synthesized as fusion polypeptides. The presence of bacterial sequences in fusion proteins further limits the use of these proteins for generating antibodies since the bacterial sequences are also antigenic. We describe two new bacterial expression vectors based on the pATH series of plasmids. These vectors were made by precisely deleting all of the trpE coding sequences found in pATH. The new vectors have enabled us to express eukaryotic genes as nonfusion polypeptides. These altered plasmids can be used to insert any DNA sequence of interest through a multiple cloning site located just 3' of an ATG start codon. Protein expression is still under the control of the trp operon and is carried out at great efficiency when the bacteria are tryptophan deprived. Studies presented here test the expression system with neurofilament subunits, NF-L and NF-H. Large amounts of recombinant nonfusion proteins were produced. Also, a time course of induction shows that the production of the nonfusion proteins was under the control of the trp operon which is readily inducible after tryptophan starvation and addition of indoleacrylic acid. These vectors may be useful for the overexpression of many proteins in a form closely approximating their native state.  相似文献   

6.
A series of Bombyx mori nuclear polyhedrosis virus (Bm-NPV) transfer vectors has been developed containing various lengths of the polyhedrin promoter, including sequences 3' of the initiation codon. The ATG initiation codon was mutated in some of these vectors to allow for the production of authentic nonfusion proteins. The ability of the various polyhedrin promoter constructs to direct expression of foreign gene sequences was assessed using two test genes, chloramphenicol acetyl transferase (cat), and human metallothionein II. Accumulation of cat mRNA and nonfused protein was low when only polyhedrin promoter sequences to -8 (relative to the translational start site of polyhedrin mRNA) were included in the transfer vector, but cat expression was comparable with that of the wild-type polyhedrin gene when promoter sequences to +5 were present. Further addition of polyhedrin gene sequences to +26 or +94 resulted in no further increase in expression. Similar results were obtained for expression of human metallothionein II, where constructs encoding polyhedrin-metallothionein fusion proteins containing polyhedrin sequences to at least +5 resulted in high levels of mRNA and protein accumulation. The expression vectors containing the +5, +26, or +94 BmNPV polyhedrin promoter can thus be used to direct maximal levels of production of nonfused proteins (when the polyedrin ATG has been mutated) or of fusion proteins, depending on which is more suitable for a particular application. These new vectors are a useful addition to those presently available and should increase the utility of the BmNPV expression system for large-scale protein production. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
The aims of high-throughput (HTP) protein production systems are to obtain well-expressed and highly soluble proteins, which are preferred candidates for use in structure-function studies. Here, we describe the development of an efficient and inexpensive method for parallel cloning, induction, and cell lysis to produce multiple fusion proteins in Escherichia coli using a 96-well format. Molecular cloning procedures, used in this HTP system, require no restriction digestion of the PCR products. All target genes can be directionally cloned into eight different fusion protein expression vectors using two universal restriction sites and with high efficiency (>95%). To screen for well-expressed soluble fusion protein, total cell lysates of bacteria culture ( approximately 1.5 mL) were subjected to high-speed centrifugation in a 96-tube format and analyzed by multiwell denaturing SDS-PAGE. Our results thus far show that 80% of the genes screened show high levels of expression of soluble products in at least one of the eight fusion protein constructs. The method is well suited for automation and is applicable for the production of large numbers of proteins for genome-wide analysis.  相似文献   

8.
Genomic sequencing has enabled the prediction of thousands of genes, most of which either cannot be assigned a function or can be only broadly categorized on the basis of sequence alone. High-throughput strategies for elucidating protein function are of high priority, and numerous approaches are being developed. Many of these approaches require the cloning of open reading frames (ORFs) into expression vectors that enable the encoded proteins to be tested for biological and biochemical activities. Typically, more than one type of vector must be employed, as different experiments require different conditions of protein production. Here we show that it is possible to simultaneously transfer a single ORF from a source vector to four target vectors using a commercially available in vitro recombination system. To test the approach, we constructed new vectors for expression of fusion proteins in yeast, including vectors for the LexA two-hybrid system. We show that individual ORFs can be efficiently transferred to four different vectors in a single in vitro reaction. The resulting expression plasmids can be separated using prototrophic markers specific to each vector. Using this system to produce multiple expression constructs simultaneously could greatly facilitate high-throughput subcloning and proteomic studies.  相似文献   

9.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, to obtain milligrams of soluble proteins is still challenging since many proteins are expressed in an insoluble form without optimization. Therefore when working with tens of proteins or protein domains it is recommended that high-throughput expression screening at a small scale (1-4ml of culture) is carried out to identify the optimal conditions for soluble protein production. Once determined, these culture conditions can be applied at a large scale to produce sufficient protein for structural or functional studies. We describe a procedure that has enabled the systematic screening of culture conditions or fusion-tags on hundreds of cultures per week. The analysis of the optimal conditions for the soluble production of these proteins helped us to design a simple and efficient protocol for soluble protein expression screening. This protocol has since been used on hundreds of proteins and is illustrated with the genome wide scale production of proteins containing the DNA binding domains of Ciona intestinalis.  相似文献   

10.
11.
Summary A novel expression vector pGEX-5T was constructed which directs the synthesis of a fusion protein with a histidine-hexapeptide and glutathione-S-transferase at its N-terminus and the recombinant protein at its C-terminus inEscherichia coli. The designed fusion gene strategy allows the purification of soluble and insoluble recombinant proteins to homogeneity with single-step affinity chromatography using immobilized glutathione and metal chelating matrix, respectively. The principle and availability of this new expression system was respectively tested with the purification of a soluble and insoluble recombinant fusion protein containing 24 and 75 amino acids of the human thrombomodulin.  相似文献   

12.
Here we describe a method for controlled intracellular processing (CIP) of fusion proteins by tobacco etch virus (TEV) protease. A fusion protein containing a TEV protease recognition site is expressed in Escherichia coli cells that also contain a TEV protease expression vector. The fusion protein vector is an IPTG-inducible ColE1-type plasmid, such as a T7 or tac promoter vector. In contrast, the TEV protease is produced by a compatible p15A-type vector that is induced by tetracyclines. Not only is the TEV protease regulated independently of the fusion protein, but its expression is highly repressed in the absence of inducer. Certain fusion partners have been shown to enhance the yield and solubility of their passenger proteins. When CIP is used as a purification step, it is possible to take advantage of these characteristics while both eliminating the need for large amounts of pure protease at a later stage and possibly simplifying the purification process. Additionally, we have observed that in some cases the timing of intracellular proteolysis can affect the solubility of the cleaved passenger protein, allowing it to be directed to either the soluble or the insoluble fraction of the crude cell lysate. This method also makes it possible to quickly gauge the efficiency of proteolysis in vivo, before protein purification has begun and in vitro processing is attempted.  相似文献   

13.
The presence of extra N- and C- terminal residues can play a major role in the stability, solubility and yield of recombinant proteins. Pfg27 is a 27K soluble protein that is essential for sexual development in Plasmodium falciparum. It was over-expressed using the pMAL-p2 vector as a fusion protein with the maltose binding protein. Six different constructs were made and each of the fusion proteins were expressed and purified. Our results show that the fusion proteins were labile and only partially soluble in five of the constructs resulting in very poor yields. Intriguingly, in the sixth construct, the yield of soluble fusion protein with an extended carboxyl terminus of 17 residues was several fold higher. Various constructs with either N-terminal or smaller C-terminal extensions failed to produce any soluble fusion protein. Furthermore, all five constructs produced Pfg27 that precipitated after protease cleavage from its fusion partner. The sixth construct, which produced soluble protein in high yields, also gave highly stable and soluble Pfg27 after cleavage of the fusion. These results indicate that extra amino acid residues at the termini of over-expressed proteins can have a significant effect on the folding of proteins expressed in E. coli. Our data suggest the potential for development of a novel methodology, which will entail construction of fusion proteins with maltose binding protein as a chaperone on the N-terminus and a C-terminal 'solubilization tag'. This system may allow large-scale production of those proteins that have a tendency to misfold during expression.  相似文献   

14.
Structural biology places a high demand on proteins both in terms of quality and quantity. Although many protein expression and purification systems have been developed, an efficient and simple system which can be easily adapted is desirable. Here, we report a new system which combines improved expression, solubility screening and purification efficiency. The system is based on two newly constructed vectors, pEHISTEV and pEHISGFPTEV derived from a pET vector. Both vectors generate a construct with an amino-terminal hexahistidine tag (His-tag). In addition, pEHISGFPTEV expresses a protein with an N-terminal His-tagged green fluorescent protein (GFP) fusion to allow rapid quantitation of soluble protein. Both vectors have a tobacco etch virus (TEV) protease cleavage site that allows for production of protein with only two additional N-terminal residues and have the same multiple cloning site which enables parallel cloning. Protein purification is a simple two-stage nickel affinity chromatography based on the His tag removal. A total of seven genes were tested using this system. Expression was optimised using pEHISGFPTEV constructs by monitoring the GFP fluorescence and the soluble target proteins were quantified using spectrophotometric analysis. All the tested proteins were purified with sufficient quantity and quality to attempt structure determination. This system has been proven to be simple and effective for structural biology. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable.  相似文献   

15.
The low yield and poor folding efficiency in vivo of soluble and active recombinant cysteine-rich proteins expressed in Escherichia coli are a major challenge for large-scale protein production and purification. Expression vectors containing Buthus martensii Karsch insect toxin (BmK IT) fused to the C terminus of the intein Ssp DnaB were constructed in an attempt to overcome this problem. Following purification and intein self-cleavage, the fusion protein His(6)-intein-IT produced insoluble BmK IT, while intein-IT-His(6) generated soluble and properly folded BmK IT. This result indicated that the positioning of the His(6) tag has a key role in the production of soluble and functional BmK IT.  相似文献   

16.
The baculovirus Autographa californica nuclear polyhedrosis virus was used as an expression vector to produce hepatitis B virus surface antigen with and without the pre-S domain. The S gene product was expressed as both fusion and nonfusion polypeptides. No difference was observed in the posttranslational modification of the fusion and nonfusion polypeptides. The S proteins were not secreted into the medium but were inserted into the endoplasmic reticulum, glycosylated, and partially extruded into the lumen of the endoplasmic reticulum as 22-nm lipoprotein particles. The oligosaccharide chains on the insect cell-derived S protein were of the N-linked high-mannose form, in contrast to the complex-type oligosaccharides detected on plasma-derived hepatitis B virus surface antigen. The pre-S-S polypeptides were inserted into the endoplasmic reticulum, glycosylated, and modified by fatty acid acylation with myristic acid. A procedure was developed to purify the S protein from cellular membranes by using detergent extraction and immunoaffinity chromatography. The purified S protein was in the form of protein-detergent micelles and was highly antigenic and immunogenic.  相似文献   

17.
A plasmid expression vector was constructed to direct the synthesis of foreign proteins in Escherichia coli as fusions with cyclomaltodextrin glucanotransferase (CGT) with cytoplasmic location (delta ssCGT). The ability of CGT to bind to covalently immobilized cyclodextrins was utilized in purifying fused target proteins. A large proportion of the cytoplasmically synthesized delta ssCGT formed inclusion bodies which adopted the active conformation at considerably high refolding concentration (67 microM delta ssCGT solution). By lowering the cultivation temperature the proportion of the soluble delta ssCGT was slightly increased. Intracellularly expressed delta ssCGT provides a potential affinity handle which forms easily refoldable inclusion bodies increasing the yield and stability, and possibly allows the expression of lethal target proteins. Interestingly, the interaction between one model fusion protein delta ssCGT-CAT (CAT, chloramphenicol acetyltransferase) and the E. coli heat shock protein GroEL was observed.  相似文献   

18.
High-throughput methods to produce a large number of soluble recombinant protein variants are particularly important in the process of determining the three-dimensional structure of proteins and their complexes. Here, we describe a collection of protein expression vectors for ligation-independent cloning, which allow co-expression strategies by implementing different affinity tags and antibiotic resistances. Since the same PCR product can be inserted in all but one of the vectors, this allows efficiency in versatility while screening for optimal expression strategies. We first demonstrate the use of these vectors for protein expression in Escherichia coli, on a set of proteins belonging to the ubiquitin specific protease (USP) Family. We have selected 35 USPs, created 145 different expression constructs into the pETNKI-His-3C-LIC-kan vector, and obtained 38 soluble recombinant proteins for 21 different USPs. Finally, we exemplify the use of our vectors for bacterial co-expression and for expression in insect cells, with USP4 and USP7 respectively. We conclude that our ligation-independent cloning strategy allows for high-throughput screening for the expression of soluble proteins in a variety of vectors in E. coli and in insect cells. In addition, the same vectors can be used for co-expression studies, at least for simple binary complexes. Application in the family of ubiquitin specific proteases led to a number of soluble USPs that are used for functional and crystallization studies.  相似文献   

19.
A prerequisite for structural genomics and related projects is to standardize the process of gene overexpression and protein solubility screening to enable automation for higher throughput. We have tested a methodology to rapidly subclone a large number of human genes and screen these for expression and protein solubility in Escherichia coli. The methodology, which can be partly automated, was used to compare the effect of six different N-terminal fusion proteins and an N-terminal 6*His tag. As a realistic test set we selected 32 potentially interesting human proteins with unknown structures and sizes suitable for NMR studies. The genes were transferred from cDNA to expression vectors using subcloning by recombination. The subcloning yield was 100% for 27 (of 32) genes for which a PCR fragment of correct size could be obtained. Of these, 26 genes (96%) could be overexpressed at detectable levels and 23 (85%) are detected in the soluble fraction with at least one fusion tag. We find large differences in the effects of fusion protein or tag on expression and solubility. In short, four of seven fusions perform very well, and much better than the 6*His tag, but individual differences motivate the inclusion of several fusions in expression and solubility screening. We also conclude that our methodology and expression vectors can be used for screening of genes for structural studies, and that it should be possible to obtain a large fraction of all NMR-sized and nonmembrane human proteins as soluble fusion proteins in E. coli.  相似文献   

20.
An expression vector, pUBEX, was constructed for extracellular production of heterologous proteins in Bacillus subtilis using a polyhistidine tag on the C-terminal sequence, providing an efficient and easy purification of the protein. A CII protein, a member of Bowman–Birk protease inhibitors, which was expressed as an inactive protein in Escherichia coli, was successfully expressed in Bacillus subtilis using the pUBEX vector and was purified to 6.4 mg l–1 by the immobilized metal affinity chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号