首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of growth rate and medium composition on exopolymer production byRhizobium leguminosarum was studied. When grown in medium containing 10g/l mannitol and 1g/l glutamic acid,Rhizobium leguminosarum biovartrifolii TA-1 synthesized up to 2.0g/l of extracellular polysaccharide (EPS), and up to 1.6g/l of capsular polysaccharide (CPS). Under non-growing cell conditions in medium without glutamic acid, CPS synthesis by strain TA-1 could proceed to 2.1g/l, while EPS-production remained relatively low (0.8g/l). Maximal CPS-yield was 2.9g CPS/l medium in a medium containing 20g/l mannitol and 2g/l glutamic acid. TheEPS-deficient strain R. leguminosarum RBL5515,exo4::Tn5 was able to produce CPS to similar levels as strain TA-1, but CPS-recovery was easier because of the low viscosity of the medium and growth of the cells in pellets. With strain TA-1 in nitrogen-limited continuous cultures with a constant biomass of 500mg cell protein/l, EPS was the most abundant polysaccharide present at every dilution rate D (between 0.12 and 0.02 h–1). The production rates were 50–100mg/g protein/h for EPS and 15–20mg/g protein/h for CPS. Only low amounts of cyclic -(1,2)-glucans were excreted (10–30 mg/l) over the entire range of growth rates.Abbreviations bv biovar - CPS capsular polysaccharide - EPS extracellular polysaccharide - HMr high molecular mass - LMr low molecular mass - YEMCR Yeast Extract-Mannitol-Congo Red agar  相似文献   

2.
Optimization of medium composition for the production of exopolysaccharides (EPS) from Phellinus baumii Pilát in submerged culture and the immuno-stimulating activity of EPS were carried out. Firstly, the medium components having significant effect on EPS production were screened out to be glucose, yeast extract and diammonium oxalate monohydrate by using a 2(7−3) fractional factorial design. Secondly, the concentrations of the three factors were optimized using central composite design in response surface methodology. As results, a quadratic model was found to fit for EPS production, and the optimal medium composition was determined as following (g/l): 34.12 glucose, 4 peptone, 5.01 yeast extract, 0.88 diammonium oxalate monohydrate, 0.75 MgSO4 and 1 KH2PO4 and 0.0075 thiamine (VB1). A yield of 2.363 ± 0.04 g/l for EPS was observed in verification experiment. Finally, EPS from P. baumii Pilát was found to have direct immuno-stimulating activity in vitro on splenocyte proliferative response and acid phosphatase activity in peritoneal macrophages in a dose-dependent manner.  相似文献   

3.
Summary The exopolysaccharide (EPS) production and growth characteristics of Lactobacillus casei CRL 87 under pH control were studied. Maximum polymer synthesis (488 mg/l) and cell viability (2.4×1010 cfu/ml) occurred when L. casei was cultured at a constant pH of 6.0 and 30°C for 24 h. However, the optimum specific EPS production (3.9×10-5 g EPS/g cell dry weigt) and EPS yield (4.3%) were found at a pH of 4.0.  相似文献   

4.
A high yielding cell line of Scutellaria baicalensis G. has successfully been developed to produce flavonoids. Major components of the flavonoids were identified as baicalin and wogonin-7-O-glucuronic acid by a series of instrumental analyses using UV, IR, MASS, and NMR. After 12 days in suspension culture, the cell growth reached 14 g DW/l, and baicalin and wogonin-7-O-glucuronic acid were obtained in concentrations of 2.9 g/l and 1.07 g/l, respectively. The culture temperature was found to be an important parameter for improving production yield of the flavonoids. The yield of baicalin was observed to increase to 4.2 g/l by shifting the temperature from 30 °C to 25 °C after 72 h of suspension culture.Abbreviations DW cell dry weight - FW cell fresh weight - 2,4-D 2,4-dichlorophenoxyacetic acid - PSH medium phytohormone added Schenk and Hildebrandt medium - FPM a modified Schenk and Hildebrandt medium for flavonoid production  相似文献   

5.
In the present study, the production of exopolysaccharides (EPS) by 13 strains of Lactobacillus and 6 strains of Bifidobacterium in a chemical defined medium (CDM) supplemented with 30 g lactose/l was first compared. The highest EPS production of the Lactobacillus strains was found in L. salivarius BCRC 14759 while among the Bifidobacterium strains examined, B. bifidum BCRC 14615 showed the highest EPS production. Analyzes of the effect of lactose concentration and cultivation temperature on EPS production revealed that L. salivarius produced the highest amount of EPS (45.3 mg/l) in CDM supplemented with 5 g lactose/l at 40°C while B. bifidum produced the highest EPS (17.0 mg/l) in CDM supplemented with 40 g lactose/l at 35°C. α-Phosphoglucomutase, UDP-glucose pyrophosphorylase and UDP-galactose-4-epimerase exhibited a markedly notable activity compared with other enzymes examined in the cell extract of both test organisms. This indicates their possible involvement in the biosynthesis of EPS.  相似文献   

6.
A hydrogen-producing photosynthetic bacteria strain, Rhodopseudomonas acidophila, was used to investigate the production of extracellular polymeric substances (EPS) in the presence of toxic substances and the effect of toxicants on bacterial surface characteristics. Addition of the toxic substances including Cu(II), Cr(VI), Cd(II) and 2,4-dichlorophenol (2,4-DCP) stimulated the production of EPS but reduced the cell dry weight. At concentrations of 30 mg l−1 Cu(II), 40 mg l−1 Cr(VI), 5 mg l−1 Cd(II) and 100 mg l−1 2,4-DCP, the EPS content increased by 5.5, 2.5, 4.0 and 1.4 times, respectively, than the control. These toxic substances also greatly influenced the proteins/carbohydrates ratio of EPS. The ratios in the presence of toxic substances were always higher than that of control. Furthermore, under toxic conditions, the increase in the protein content far exceeded than that of others in EPS, suggesting that extracellular proteins could protect cells against toxic substances. The toxic substances significantly changed the surface characteristics and flocculation ability of R. acidophila, such as surface energy, relative hydrophobicity and free energy of adhesion.  相似文献   

7.
Summary To improve the production of extracellular polysaccharides (EPS) in liquid cultures of Polianthes tuberosa (tuberose) cells, the viscosity of the culture medium was lowered by addition of mineral salts. In cultures in the medium supplemented with 30 mM CaCl2, higher production of EPS (6.5g/l) has been realized (vs. 4.6 g/l without CaCl2).  相似文献   

8.
Paenibacillus jamilae, a strain isolated from compost prepared with olive-mill wastewaters, produced an extracellular polysaccharide (EPS) when it was grown in a culture containing olive-mill waste waters (OMWW) as sole carbon and energy sources. Maximal EPS production in 100 mL batch-culture experiments (5.1 g L−1) was reached with a concentration of 80% of OMWW as fermentation substrate (v/v). Although an inhibitory effect was observed on growth and EPS production when OMWW concentration was increased, an appreciable amount of EPS (2.7 g L−1) was produced with undiluted OMWW. Sepharose CL-2B chromatography showed that the EPS presented two fractions, EPS I (>2000 kDa) and EPS II (500 kDa). Both fractions were characterized by GC-MS as two different acidic heteropolysaccharides containing glucose, galactose and mannose as the major components. The performed study made evident the possibility of using OMWW as substrate for the production of EPS by P. jamilae with a satisfactory yield.  相似文献   

9.
The physico-chemical factors influencing the production of poly(-hydroxybutyric acid) [PHB] and exopolysaccharide (EPS) by a yellow pigmented Azotobacter beijerinckii strain WDN-01 were investigated. Under N-free condition with excess carbon, PHB accumulation attained its maximum at the late exponential phase followed by a sharp decline while EPS production was more or less parallel with growth. Polymer synthesis, however, was carbon-source-specific, the highest yield of PHB (2.73 g/l) and EPS (1.5 g/l) was obtained with 3% (w/v) glucose and mannitol respectively. Organic N-sources enhanced PHB production significantly, but inorganic nitrogenous compounds were inhibitory to both PHB and EPS synthesis. At optimum K2HPO4 concentration, the polymer yield was attributed to biomass yield. Oxygen-limiting conditions, irrespective of carbon sources favoured production of PHB and EPS.  相似文献   

10.
The Rhizobium sp., isolated from the root nodules of the leguminous fodder herb Melilotus alba, produced large amounts of extracellular polysaccharides (EPS) (963.5 μg/ml) in a yeast extract mannitol medium. Growth and EPS production started simultaneously, but EPS production reached its maximum during the stationary phase of growth of the bacteria, at 20 hours. EPS production was increased with all of the thirteen sugars tested. Different nitrogen sources, such as nitrates, glutamic acid, casamino acid and L-asparagine, increased the EPS production although it was inhibited by glycine, nitrite and ammonium salts. Among the vitamins and metal ions, only pyridoxal phosphate and ZnSO4 promoted EPS production. Attempts were made to optimize the cultural requirements for growth and maximum EPS production. Maximum EPS production (1457.0 μg/ml) was obtained when the medium was supplemented with glucose (1%), pyridoxal phosphate (2 μ g/ml), ZnSO4 × 7 H2O (10 μg/ml) and glutamic acid (0.1%). Under these conditions, the production was increased by 254.3% compared to the control. The EPS contained arabinose, xylose and rhamnose monomers. The presence of arabinose and xylose in the EPS produced by a Rhizobium sp. was uncommon.  相似文献   

11.
The effect of NaCl on cell growth and polysaccharide biosynthesis in the medicinal mushroom Phellinus linteus was studied. With the increase of NaCl concentration between 1 g/l and 7 g/l in the culture medium, the cell growth and intracellular polysaccharide (IPS) accumulation were decreased; extracellular polysaccharide (EPS) concentration was enhanced, with an increase of NaCl concentration from 1 g/l to 3 g/l. Under the optimum NaCl concentration of 3 g/l, the maximum EPS and IPS production reached 2.2±0.15 g/l and 53.6±2.45 mg/g DW on day 12, which improved 32.27% and decreased 16.89% compared to the control, respectively. Both EPS and IPS showed new polysaccharide components by fractionation with DEAE-cellulose ion exchange chromatography compared to the control. The results presented in this study are considered helpful for further investigation on the diversity of polysaccharide biosynthesis of this medicinal fungus under NaCl environments.  相似文献   

12.
In this study, Aspergillus sp. was isolated for the production of extracellular polysaccharide. The process parameters were initially optimized by traditional methods. The cheap substrate, wheat bran was used for the production of extracellular polysaccharide in solid state fermentation. Supplementation of (1%, w/w) maltose, gelatin enhanced EPS production (5.36?mg/g). The salts such as, Cu2+ (4.9?mg/g), Ca2+ (3.5?mg/g), Zn2+ (2.9?mg/g), Mn2+ (3.4?mg/g) and Mg2+ (1.8?mg/g) stimulated EPS production. In two level full factorial experimental designs, the EPS yield varied from 3.18 to 11.65?mg/g wheat bran substrate with various combinations of the components supplemented with wheat bran substrate. Among these selected factors in central composite design, maltose significantly influenced on extracellular polysaccharide production.  相似文献   

13.
We reported that lignocellulose decomposition can be used to facilitate the production of bioactive polysaccharides from submerged culture of Inonotus obliquus. Exo-polysaccharide (EPS) production and antioxidant activity by Inonotus obliquus was enhanced by employing lignocellulose decomposition in a corn straw-containing submerged fermentation. A significant increase in the EPS production and hydroxyl radical scavenging activity from 1.09 ± 0.01 g/l and 72.3 ± 1.9% in a basal medium to 1.38 ± 0.02 g/l and 82.7 ± 0.5% in a corn straw-containing medium was obtained. A synchronized effect between lignocellulose decomposition and malondialdehyde presenting hydroxyl radical concentration in the fermentation broth was identified. The adding of thiourea, a hydroxyl radical-scavenging reagent, suppressed malondialdehyde generation and lowered the lignocellulose decomposition rate. Correspondingly, the EPS production and hydroxyl radical scavenging activity decreased to 1.26 g/l and 74%. The EPS obtained from the corn straw-containing medium also presented the strongest superoxide radical scavenging activity. The monosaccharide components of the EPS from the corn straw-containing medium are rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar proportions at 3.0, 3.0, 0.9, 46.6, 11.4, and 35.1%, respectively, which are largely different from the molar proportions of the EPS from the basal medium.  相似文献   

14.
The effect of explant age, plant growth regulators and culture conditions on somatic embryogenesis and rosmarinic acid production from leaf explants of Salvia officinalis and S. fruticosa plants collected in Greece was investigated. Embryogenic callus with numerous spherical somatic embryos could be induced on explants derived from both species and cultured for 3 weeks on a Murashige and Skoog (MS) medium supplemented with 1.8–18 μm 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (Kin) or 10.5–21 μm 1-naphthalenacetic acid and 6-benzyladenine. Only explants from young plants (with six to eight leaves) responded to the culture treatments and, in general, low light intensities (50 μmol m–2 s–1) favoured callus formation and induction of somatic embryos. Somatic embryos were further developed on the same medium. Heart- and torpedo-shaped embryos (1–2 mm long) were subcultured on a growth-regulator-free MS medium for maturation. Maximum rosmarinic acid accumulation in S. officinalis and S. fruticosa callus cultured on 4.5 μm 2,4-D and 4.5 μm Kin was 25.9 and 29.0 g/l, respectively. Received: 17 January 1997 / Revision received: 26 May 1997 / Accepted: 30 June 1997  相似文献   

15.
Essential oils were produced by flowers of Hyacinthus orientalis L. that had been regenerated in vitro. The production of these oils was affected by the concentration of gibberellic acid and sucrose in the medium and by temperature. The highest concentration of essential oils was obtained when regenerated flowers were cultured in vitro for 3 weeks at 20 °C on Murashige and Skoog's medium that contained 30 g/l sucrose plus 1 mg/l gibberellic acid, whereas the highest amount of essential oils was obtained after a culture period of 3 weeks at 25 °C. The composition of essential oils from flowers that had been regenerated in vitro was compared with that from flowers grown in the field. Essential oils detected by gas-liquid chromatography included nine components in the case of the regenerated flowers and six and ten components in the case of stage 3 and stage 4 flowers grown in the field, respectively. There were four common components, namely, 1-hepten-3-ol, benzyl alcohol, phenethyl alcohol and cinnamyl alcohol. In the regenerated flowers, a single component, phenethyl alcohol, was a major constituent (75%), whereas two compounds, phenethyl alcohol (stage 3, 55%; stage 4, 48%) and cinnamyl alcohol (stage 3, 23%; stage 4, 29%) were the major constituents in the case of flowers grown in the field. Four and five other components were specific to flowers regenerated in vitro and field-grown flowers, respectively.Abbreviations BA 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - ABA abscisic acid - GA3 gibberellic acid - ACC 1-aminocyclopropane-1-carboxylic acid - ethephon (2-chloroethyl)phosphonic acid - MS medium Murashige and Skoog's medium - GLC gas-liquid chromatography - GC-MS gas chromatography-mass spectrometry - FW fresh weight  相似文献   

16.
Artemisinin, an anti-malarial drug isolated from the annual wormwood Artemisia annua L., has a marked activity against chloroquine-resistant and chloroquine-sensitive strains of Plasmodium falciparum, and is useful in treatment of cerebral malaria. Shoot cultures of Artemisia annua L. were established on Murashige and Skoog basal medium which contained (per litre) 30 g sucrose, 0.5 mg 6-benzyladenine and 0.05 mg naphthaleneacetic acid. Using an optimized combination of sucrose (30 g/l), nitrate (45 mM), inorganic phosphate (200 mg/l), gibberellic acid (7 mg/l) and the ratio of NH4 +-N to NO3 -N of 1:3, artemisinin production reached 26.7 mg/l after 30 days. This procedure provides a potential alternative for production of artemisinin from in vitro tissue cultures.  相似文献   

17.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

18.
Dynamics in the production of extracellular polymeric substances (EPS) were investigated for the benthic diatoms Cylindrotheca closterium (Ehrenberg) and Nitzschia sp. The effect of growth phase and light:dark conditions were examined using axenic cultures. Two EPS fractions were distinguished. Soluble EPS was recovered from the culture supernatant and represented polysaccharides that were only loosely associated with the cells. Bound EPS was extracted from the cells using warm (30° C) water and was more closely associated with the diatom aggregates. Concentrations of EPS exceeded internal concentrations of sugar throughout growth, indicating that EPS production is important in these organisms. Soluble and bound EPS revealed distinct differences in daily dynamics during the course of growth. Soluble EPS was produced continuously once cultures entered the stationary phase. During the stationary phase, chl a‐normalized EPS production rates equaled 6.4 and 3.4 d ? 1 for C. closterium and Nitzschia sp., respectively. In contrast, production of bound EPS occurred only in the light and was highest during the exponential phase. Up to 90% of the attached EPS that was produced in the light was degraded during the subsequent dark period. The monosaccharide distribution of EPS was constant during the course of the experiment. The soluble EPS consisted of high amounts of galactose and glucuronic acid, relative to rhamnose, glucose, xylose/mannose, and galacturonic acid. In contrast, glucose was the dominant monosaccharide present in the bound EPS. These differences suggest that the production of the two distinct EPS fractions is under different metabolic controls and probably serves different cellular functions.  相似文献   

19.
Callus was induced on the wounded immature seeds and mature zygotic embryos of Dysosma pleiantha (Hance) Woodson (Berberidaceae) on a medium based on Murashige and Skoog's (1962) formula supplemented with 1 mg/l 2,4-dichlorophenoxy-acetic acid (2,4-D). Spontaneous embryoid formation occurred on the media containing low concentrations of 2,4-D (0.1–0.5 mg/l). These embryoids germinated in either MS or B5 medium containing 1 mg/l N6-benzyladenine and 1 mg/l gibberellic acid. The regenerated plantlets were successfully transferred to soil.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BA N6-benzyladenine - GA3 gibberellic acid - MS medium Murashige and Skoog's (1962) medium  相似文献   

20.
Aims: To optimize the medium components for the production of indole‐3‐acetic acid (IAA) by isolated bacterium Pantoea agglomerans strain PVM. Methods and Results: Present study deals with the production of an essential plant hormone IAA by a bacterial isolate P. agglomerans strain PVM identified by 16S rRNA gene sequence analysis. The medium containing 8 g l?1 of meat extract and 1 g l?1 of l ‐tryptophan (precursor) at optimum pH 7, 30°C and 48‐h incubation gave the maximum production of IAA (2·191 g l?1). Effect of IAA synthesized on in vitro root induction in Nicotiana tobacum (leaf) explants was compared with that of control. IAA was characterized by high‐performance thin‐layer chromatography, high‐performance liquid chromatography and gas chromatography–mass spectroscopy. Conclusions: Pantoea agglomerans strain PVM was a good candidate for the inexpensive and utmost production of IAA in short period, as it requires simple medium (meat extract and l ‐tryptophan). Significance and Impact of the Study: The present report first time showed the rapid, cost‐effective and maximum production of IAA. No reports are available on the optimization of particular medium components for the production of IAA. This study demonstrates a novel approach for in vitro root induction in N. tobacum (leaf) explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号