首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chi Z  Wang XX  Ma ZC  Buzdar MA  Chi ZM 《Biometals》2012,25(1):219-230
The l-ornithine-N 5-monooxygenase structural gene (SidA gene, accession number: FJ769160) was isolated from both the genomic DNA and cDNA of the marine yeast Aureobasidium pullulans HN6.2 by inverse PCR and RT-PCR. An open reading frame of 1,461 bp encoding a 486 amino acid protein (isoelectric point: 7.79) with calculated molecular weight of 55.4 kDa was characterized. The promoter of the gene (intronless) was located from −1 to −824 and had three HGATAR boxes which were putative binding motifs for the respective DNA-binding motifs and one CATA box. The SidA gene in A. pullulans HN6.2 was disrupted by integrating the hygromycin B phosphotransferase (HPT) gene into Open Reading Frame of the SidA gene using homologous recombination. Of all the disruptants obtained, one strain S6 (∆sidA) did not synthesize both intracellular and extracellular fusigen so that it could not inhibit growth of the pathogenic bacteria Vibrio anguillarum and Vibrio parahaemolyticus. The disruptant S6 did not grow in the iron-deplete medium and seawater medium because cell budding was stopped, but could grow in the iron-replete medium with 10 μM Fe3+ and Fe2+. H2O2 in the medium was more toxic to the disruptant S6 than to its wild type HN6.2. Thus, we infer that the fusigen produced by the marine-derived A. pullulans HN6.2 can play a unique role in chelating, uptake and concentration of iron to maintain certain proper physiological functions within the cells and secretion of siderophore may represent an efficient tool to eliminate competitors to compete for limiting nutritional resources in marine environments.  相似文献   

2.
A screening for siderophores produced by the ectomycorrhizal fungi Laccaria laccata and Laccaria bicolor in synthetic low iron medium revealed the release of several different hydroxamate siderophores of which four major siderophores could be identified by high resolution mass spectrometry. While ferricrocin, coprogen and triacetylfusarinine C were assigned as well as other known fungal siderophores, a major peak of the siderophore mixture revealed an average molecular mass of 797 for the iron-loaded compound. High resolution mass spectrometry indicated an absolute mass of m/z = 798.30973 ([M + H]+). With a relative error of Δ = 0.56 ppm this corresponds to linear fusigen (C33H52N6O13Fe; MW = 797.3). The production of large amounts of linear fusigen by these basidiomycetous mycorrhizal fungi may possibly explain the observed suppression of plant pathogenic Fusarium species. For comparative purposes Fusarium roseum was included in this study as a well known producer of cyclic and linear fusigen.  相似文献   

3.
N5-(l-1-Carboxyethyl)-l-ornithine: NADP+ oxidoreductase [N5-(CE)ornithine synthase] catalyzes the NADPH-dependent reductive condensation between pyruvic acid and the terminal amino group ofl-ornithine andl-lysine to yield N5-(l-1-carboxyethyl)-l-ornithine and N6-(l-1-carboxyethyl)-l-lysine respectively. Polyclonal antibodies against N5-(CE)ornithine synthase purified fromStreptococcus lactis K1 have been used for the immunochemical (Western blot) detection and sizing of this enzyme in various lactic acid bacteria. The enzyme was confined to about one-half of the strains ofS. lactis examined. N5-(CE)ornithine synthase is constitutive, and in strains K1, 6F3, and (plasmid-free)H1-4125 the native enzyme is a tetramer composed of identical subunits of Mr=38,000. However, in other strains, including 133 (ATCC 11454), C10, and ML8, the molecular weight of the native enzyme is approximately 130,000 and the corresponding subunit Mr=35,000. Analyses of the amino acid pool components maintained byS. lactis K1 during growth in medium containing [14C] labeled and unlabeled arginine have revealed that (i) exogenous arginine is the precursor of intracellular ornithine, citrulline, and N5-(CE)ornithine, and (ii) the rates of turnover of ornithine and citrulline were considerably faster than that of N5-(CE)ornithine. These data account for the biosynthesis and accumulation of N5-(CE)ornithine byS. lactis.  相似文献   

4.
5.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   

6.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

7.
The yeast Kluyveromyces siamensis HN12-1 isolated from mangrove ecosystem was found to be able to produce killer toxin against the pathogenic yeast (Metschnikowia bicuspidata WCY) in crab. When the killer yeast was grown in the medium with pH 4.0 and 0.5% NaCl and at 25 °C, it could produce the highest amount of killer toxin against the pathogenic yeast M. bicuspidata WCY. The killing activity of the purified killer toxin against the pathogenic yeast M. bicuspidata WCY was the highest when it was incubated at 25 °C in the assay medium without added NaCl and pH 4.0. The molecular weight of the purified killer toxin was 66.4 kDa. The killer toxin produced by the yeast strain HN12-1 could kill only the whole cells of M. bicuspidata WCY among all the yeast species tested in this study. This is the first time to report that the killer toxin produced by the yeast K. siamensis HN12-1 isolated from the mangrove ecosystem only killed pathogenic yeast M. bicuspidata WCY.  相似文献   

8.
Thermophilic and thermoresistant strains of bacilli were screened on a medium containing Chrome Azurol S for the producers of siderophores. It was found that the Bacillus licheniformis VK21 strain dramatically increases secretion of the metabolite, a chelator of Fe3+, in response to addition of manganese(II) salts. The growth of the producer on a minimal medium containing MnSO4 under the conditions of iron deficiency is accompanied by the accumulation of a catecholic product, the content of which reaches maximum at the beginning of the stationary growth phase of culture. In the presence of FeCl3, the amount of the catecholic product in the medium considerably decreases. The siderophore, called SVK21, was isolated from the cultural medium and purified by reversed phase HPLC, and its siderophore function was confirmed by the test for the restoration of growth of producer cells in a medium containing EDTA. The UV spectrum of the siderophore has absorption maxima at 248 and 315 nm. According to the amino acid analysis and NMR spectrometry, the metabolite SVK21 is 2,3-dihydroxybenzoyl-glycyl-threonine.  相似文献   

9.
Mature human growth hormone (hGH) cDNA was cloned by homologous recombination into the yeast Pichia pastoris genome. The hGH gene expression was placed under the control of the methanol-inducible alcohol oxidase 1 (AOX1) gene promoter and the Saccharomyces cerevisiae -factor signal sequence to direct the secretion of recombinant human growth hormone (rhGH) into the growth medium. O2-limited induction of recombinant yeast strains in shake tubes with 3 ml of culture medium produced up to 11 mg rhGH l–1, while high cell density cultures using a 2-l bioreactor produced about 49 mg rhGH l–1 achieving 40% of total protein of the culture medium supernatant.  相似文献   

10.
N-Deoxyschizokinen, a novel siderophore, was isolated from stationary phase cultures of Bacillus megaterium ATCC 19213 and identified as 4-[(3(acetylhydroxyamino)propyl)amino]-2-[2-[(3-(acetylamino)propyl)amino]-2-oxoethyl]-2-hydroxy-4-oxo-butanoic acid. The siderophore was purified by HPLC and its structure determined using 1H and 13C NMR, 1H-1H COSY and electrospray mass spectroscopy. The monohydroxamate siderophore has the same carbon skeleton as schizokinen but the hydroxyl group on one hydroxamate is replaced by a hydrogen. A detailed 1H NMR study of schizokinen, N-deoxyschizokinen and their imides, schizokinen A and N-deoxyschizokinen A is presented.  相似文献   

11.
The ability of synthetic derivatives of the siderophore tripeptide of N 5-hydroxy-N 5-acetyl-l-ornithine to promote the growth of various strains of mycobacteria and Gram negative bacteria was found to depend significantly on the hydrophobic nature of the derivative. Although the tripeptide of N 5-hydroxy-N 5-acetyl-l-ornithine is not normally utilized by mycobacteria, an N-terminal palmitoyl derivative mimicked natural mycobactin J in all studies.  相似文献   

12.
The plant pathogenic fungus Magnaporthe grisea excretes siderophores of the coprogen-type for iron acquisition and uses ferricrocin for intracellular iron storage. In the present report we characterize mutants with defects in extracellular siderophore biosynthesis. Deletion of the M. grisea SSM2 gene, which encodes a non-ribosomal peptide synthetase, resulted in a loss of the production of all coprogens. The mutant strains had a reduced growth rate, produced fewer conidia and were more sensitive to oxidative stress. Ferricrocin production was not affected. Upon deletion of M. grisea OMO1, a gene predicted to encode an l-ornithine-N5-monooxygenase, no siderophores of any type were detected, the strain was aconidial, growth rate was reduced and sensitivity to oxidative stress was increased. Abundance of several proteins was affected in the mutants. The Δssm2 and Δomo1 mutant phenotypes were complemented by supplementation of the medium with siderophores or reintroduction of the respective genes.  相似文献   

13.
Abstract

The functional expression of olfactory receptors (ORs) is a primary requirement to utilize olfactory detection systems. We have taken advantage of the functional similarities between signal transduction cascades in the budding yeast Saccharomyces cerevisiae and mammalian cells. The yeast pheromone response pathway has been adapted to allow ligand‐dependent signaling of heterologous expressed G‐protein coupled receptors (GPCRs) via mammalian or chimeric yeast/mammalian Gα proteins. Two different strategies are reported here which offer a positive screen for functional pairs. The OR and Gα protein are introduced into the modified yeast cells such that they hijack the pheromone response pathway usually resulting in cell cycle arrest. The first strategy utilizes ligand‐induced expression of a FUS1‐HIS3 reporter gene to permit growth on a selective medium lacking histidine; the second to induce ligand‐dependent expression of a FUS1‐Hph reporter gene, conferring resistance to hygromycin. Validation of the systems was performed using the rat I7 receptor response to a range of aldehyde odorants previously characterized as functional ligands. Of these only heptanal produced a positive growth response in the concentration range 5 × 10?8 to 5 × 10?6 M. Induction conditions appear to be critical for functional expression, and the solvents of odorants have a toxic effect for the highest odorant concentrations. The preference of rat I7 receptor for the ligand heptanal in yeast has to be compared to concurrent results obtained with mammalian expression systems.  相似文献   

14.
The dominant glycosylation mutants of MDAY-D2 mouse lymphoma cells, designated class 2 (D33W25 and D34W25) were selected for their resistance to the toxic effects of wheat germ agglutinin (WGA) and shown to express elevated levels of Neu5Gc. In accordance with this, the activity of CMP-Neu5Ac hydroxylase was found to be substantially higher in the mutant cells. The hydroxylase in the D33W25 mutant cells exhibited kinetic properties identical to those of the same enzyme from mouse liver. Growth rate experimentsin vivo andin vitro, where the mutant cells grew more slowly at low cell densities in serum-free medium and also formed slower growing tumours in syngeneic mice, indicate that CMP-Neu5Ac hydroxylase expression may be associated with altered growth of the mutant cells.Abbreviations WGA wheat germ agglutinin - Neu5Ac N-acetyl--d-neuraminic acid - Neu5Gc N-glycology--d-neuraminic acid - CMP-Neu5Ac cytidine-5-monophospho-N-acetylneuraminic acid - CMP-Neu5Gc cytidine-5-monophospho-N-glycoloylneuraminic acid - FACS fluorescence-activated cell sorting - buffer A triethylamine hydrogen carbonate, pH 7.6 (concentration given at appropriate points in the text) - SFM serum free medium - IMDM Iscove's modified Dulbecco's medium - CMP-Neu5Ac hydroxylase CMP-N-acetylneuraminate: NAD(P)H oxido-reductase (N-acetyl hydroxylating) (EC 1.14.99.18); CMP-sialate hydrolase (EC 3.1.4.40); sialic acid-pyruvate lyase (EC 4.1.3.3)  相似文献   

15.
New siderophores were isolated and purified from the spent growth medium of the cyanobacteriaSynechococcus sp. PCC 7942 (Anacystis nidulans R2) andAnabaena variabilis ATCC 29413 by solvent extraction and thin-layer chromatography. For each species the siderophore was released into the medium when the cells were grown at low iron concentrations and was not found in the medium of cells grown in iron-sufficient medium. Through a series of biological and chemical tests, combined with spectral analysis, the dihydroxamate nature of each siderophore was confirmed. The siderophores produced bySynechococcus sp. PCC 7942 andA. variabilis had distinct relative molecular masses of 310–313 Da and 520–525 Da, respectively. Neither of the two strains produced Arnow-positive extracellular organics, which indicate the excretion of extracellular catechol-type siderophores.  相似文献   

16.
In this study, the effects of inositol addition on expression of the MAL gene encoding maltase and phosphatidylinositol (PI) biosynthesis in Schizosaccharomyces pombe (a naturally inositol-requiring strain) were examined. We found that specific maltase activity was at its maximum when the concentration of added inositol reached 6 μg ml−1 in a synthetic medium containing 2.0% (w/v) glucose. When the concentration of added inositol was 1 μg ml−1 in the medium, repression of MAL gene expression occurred at glucose concentration higher than 0.2% (w/v). However, when S. pombe was cultured in the synthetic medium containing 6 μg ml−1, repression of maltase gene expression occurred only at initial glucose concentration above 1.0% (w/v). More mRNA encoding maltase was detected in the cells grown in the medium with 6 μg ml−1 inositol than in those grown in the same medium with 1 μg ml−1 inositol. These results demonstrate that higher inositol concentrations in the synthetic medium could derepress MAL gene expression in S. pombe. PI content of the yeast cells grown in the synthetic medium with 6 μg ml−1 of inositol was higher than that of the yeast cells grown in the same medium with 1 μg ml−1 of inositol. This means that PI may be involved in the derepression of MAL gene expression in S. pombe.  相似文献   

17.
18.
Iron is a key trace element important for many biochemical processes and its availability varies with the environment. For human pathogenic fungi iron acquisition can be particularly problematical because host cells sequester free iron as part of the acute‐phase response to infection. Fungi rely on high‐affinity iron uptake systems, such as reductive iron assimilation (RIA) and siderophore‐mediated iron uptake (non‐RIA). These have been extensively studied in pathogenic fungi that exist outside of host cells, but much less is known for intracellular fungal pathogens. Talaromyces marneffei is a dimorphic fungal pathogen endemic to Southeast Asia. In the host T. marneffei resides within macrophages where it grows as a fission yeast. T. marneffei has genes of both iron assimilation systems as well as a paralogue of the siderophore biosynthetic gene sidA, designated sidX. Unlike other fungi, deletion of sidA or sidX resulted in cell type‐specific effects. Mutant analysis showed that T. marneffei yeast cells also employ RIA for iron acquisition, providing an additional system in this cell type that differs substantially from hyphal cells. These data illustrate the specialized iron acquisition systems used by the different cell types of a dimorphic fungal pathogen and highlight the complexity in siderophore‐biosynthetic pathways amongst fungi.  相似文献   

19.
20.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号