首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies directed against nuclear envelope lamin proteins have been used in conjunction with three-dimensional light and electron microscope methodologies to determine the spatial organization of lamins in diploid interphase nuclei and to relate this organization to the positions of chromatin in the nuclear periphery. Using Drosophila early embryos, Drosophila Kc cells, and human HeLa cells, it is qualitatively and quantitatively observed that lamins are organized as a highly discontinuous, apparently fibrillar network that leaves large voids in the nuclear periphery containing little or no lamin. Using fluorescence microscopy to compare and quantitate the relationship between chromatin and the lamin network, it is found that although there is a strong tendency for the most peripheral chromatin to be positioned directly underneath a lamin fiber, only a small fraction of the chromatin in the nuclear periphery is sufficiently close to a lamin fiber to possibly be in direct contact.  相似文献   

2.
Chromatin associated with the nuclear envelope appears in the interphase nuclei as a layer of anchorosomes, granules 20-25 nm in diameter. The fraction of chromatin directly associated with the nuclear envelope is resistant to decondensation, shows a low level of DNA methylation, and contains specific acid-soluble proteins. However, mechanisms underlying the interaction of chromatin with the nuclear envelope are not fully understood. Specifically, it is not known whether anchorosomes are permanent structures or if they undergo reversible disassembly during mitosis, when contacts between chromatin and the nuclear envelope are destroyed. We obtained immune serum recognizing a 68 kDa protein from the nuclear envelopes fraction and studied the localization of this protein in interphase and mitotic cells. We show that this protein present in the NE/anchorosomal fraction does not remain bound with chromosomes during mitosis. It dissociates from chromosomes at the beginning of the prophase and then can be identified again at the periphery of the newly forming nuclei in the telophase.  相似文献   

3.
4.
To test the hypothesis that genome architecture in interphase is related to nuclear function, we have compared the disposition of centromeres in nuclei of undifferentiated rat L6E9 myoblasts with that in nuclei of L6E9 myotubes differentiatedin vitro.Immunofluorescence labeling showed that centromeres repositioned to the nuclear periphery during differentiation, and condensed chromatin was more prominent at the myotube nuclear envelope by electron microscopy. These data indicate that, in parallel with considerable changes in gene expression, the spatial order of the genome undergoes substantial rearrangement during myogenesis.  相似文献   

5.
We have examined the composition and ultrastructure of the nuclear periphery during in vitro myogenesis of the rat myoblast cell line, L6E9. Immunofluorescence labelling and immunoblotting showed that lamins A/C and B were all present in undifferentiated cells, but that they increased significantly before extensive cell fusion had occurred, with lamins A/C increasing proportionately more. Electron microscopic observations were consistent with these results, showing an increase in the prominence of the lamina during differentiation. On the other hand, immunofluorescence labelling suggested that the P1 antigen began to disappear from the nuclear periphery as the cells were fusing, after the increase in lamin quantity, and was no longer detectable in multinucleated cells. Unexpectedly, however, P1 was readily detected in isolated nuclei, whether prepared from myoblast or differentiated cultures, as well as in both myoblast and myotube nuclear matrices. It appears probable, therefore, that the fading of P1 labelling is due to masking of the epitope by a soluble factor recruited to the nuclear periphery as cells differentiate. These data, together with evidence that the genome is substantially rearranged during L6E9 myogenesis [Chaly and Munro, 1996], suggest that L6E9 cells are a useful model system in which to study the interrelationship of nuclear envelope organization, chromatin spatial order, and nuclear function. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The role of the Drosophila lamin protein in nuclear envelope assembly was studied using a Drosophila in vitro assembly system that reconstitutes nuclei from added sperm chromatin or naked DNA. Upon incubation of the embryonic assembly extract with anti-Drosophila lamin antibodies, the attachment of nuclear membrane vesicles to chromatin surface and nuclear envelope formation did not occur. Lamina assembly and nuclear membrane vesicles attachment to the chromatin were inhibited only when the activity of the 75-kD lamin isoform was inhibited in both soluble and membrane-vesicles fractions. Incubation of decondensed sperm chromatin with an extract that was depleted of nuclear membranes revealed the presence of lamin molecules on the chromatin periphery. In addition, high concentrations of bacterially expressed lamin molecules added to the extract, were able to associate with the chromatin periphery, and did not inhibit nuclear envelope assembly. After nuclear reconstitution, a fraction of the lamin pool was converted into the typical 74- and 76-kD isoforms. Together, these data strongly support an essential role of the lamina in nuclear envelope assembly.  相似文献   

7.
In the interphase nucleus, the chromatin associated with the nuclear envelope is represented by a layer of anchorosomes, granules with a diameter of 20–25 nm. Biochemically, the fraction of chromatin directly associated with the nuclear envelope is characterized by resistance against decondensing influences, a low level of DNA methylation, and presence of specific acid-soluble proteins. However, the mechanisms lying at the base of chromatin-nuclear envelope interaction have been insufficiently studied. Specifically, it is unknown whether anchorosomes are constant structures or subject to reversible disassembly, when the contacts between chromatin and nuclear envelope are destroyed. We obtained immune serum recognizing a 68 kDa protein from the nuclear envelopes fraction and studied the localization of this protein in interphase and mitotic cells. We show that this protein, present in the NE/anchorosomal fraction, does not remain bound with chromosomes during mitosis. It dissociates from chromosomes at the beginning of the prophase and then can be identified again at the periphery of the newly forming nuclei in the telophase.  相似文献   

8.
9.
10.
Antibodies have been obtained against specific fractions of the nuclear lamina from chick red blood cells. Immunofluorescent staining of acrylamide gels from nuclear lamina preparations revealed a spectrum of at least 8–10 proteins cross-reacting immunologically with each other. These proteins are not the result of proteolysis in the course of preparation. The antigens are localized in the nuclear periphery and do not extend into the chromatin. Interspecies cross-reactions enabled us to localize the antigens in the envelope of Xenopus oocyte nuclei. In this case any association with the chromatin is unlikely. During mitosis the antigens are released from the nuclear lamina and are recovered from the postmicrosomal supernatant. The molecular weights of the nuclear lamina proteins do not change during mitosis.  相似文献   

11.
利用非洲爪蟾精子染色质和卵提取物在体外重建细胞核   总被引:1,自引:0,他引:1  
曲健  张传茂 《动物学报》1995,41(2):196-200
应用非洲爪蟾去膜精子染色质和卵提取物成功地进行了细胞核本外重建。当精子染色质加入卵提取物后,首先发生染色质去浓缩作用,染色质整体结构膨胀;膜泡在膨胀的染色质外周聚集并逐渐彼此融合成双层膜;核孔复合体以某种未知方式组装入双层膜而形成核膜结构,并逐渐完全覆盖膨大的染色质,最终形成典型的间期核结构。  相似文献   

12.
Antibodies have been prepared against the three major polypeptides of the nuclear pore complex-lamina fraction from rat liver nuclei. The three antisera prepared in chickens give similar results in indirect immunofluorescence microscopy. In rat embryo fibroblasts we observe bright fluorescence at the level of the nuclear envelope, with no fluorescence of the nuclear interior and little or no fluorescence of the cytoplasm. The nuclear envelope regions of rat hepatoma cells, mouse A9 cells, HeLa cells and rat liver nuclei also fluoresce brightly. HeLa nucleoids, which are depleted of nuclear envelope components, still exhibit specific fluorescence when reacted with these antibodies. Distribution of the antigens changes during mitosis. Fluorescence in the cytoplasm is observed following the breakdown of the nuclear envelope at prometaphase. The antigens appear to progressively accumulate at the periphery of the chromosomes until telophase. In late telophase fluorescence occurs predominantly at the periphery of the chromosomes where the new nuclear envelope is formed.  相似文献   

13.
14.
Organization of the genome is critical for maintaining cell-specific gene expression, ensuring proper cell function. It is well established that the nuclear lamina preferentially associates with repressed chromatin. However, the molecular mechanisms underlying repressive chromatin formation and maintenance at the nuclear lamina remain poorly understood. Here we show that emerin binds directly to HDAC3, the catalytic subunit of the nuclear co-repressor (NCoR) complex, and recruits HDAC3 to the nuclear periphery. Emerin binding stimulated the catalytic activity of HDAC3, and emerin-null cells exhibit increased H4K5 acetylation, which is the preferred target of the NCoR complex. Emerin-null cells exhibit an epigenetic signature similar to that seen in HDAC3-null cells. Emerin-null cells also had significantly less HDAC3 at the nuclear lamina. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear periphery by increasing the catalytic activity of HDAC3.  相似文献   

15.
Nuclear rotation (NR) refers to the motion of chromatin domains in interphase nuclei of several cell types, including neurons, in vitro. It has been proposed that NR may function, during cellular differentiation, in the transposition of specific chromatin domains into the cytotypic chromosome pattern known to exist in interphase nuclei. It is controversial whether NR represents motion of nuclei in toto, including the nuclear envelope, or whether NR represents independent motion of subnuclear structures, relative to each other. Using nucleoli as markers of chromatin motion in dorsal root ganglion neurons in vitro, we now show that trajectories of individual nucleoli are spatially restricted to subnuclear domains. Nucleoli move at mean rates of 2.153 +/- 0.037 deg/min and exhibit periodic fluctuations in rate. Fast Fourier transform analyses show dominant frequencies ranging from 0.47 c/h to 2.91 c/h. The power spectra of periodic motion of 15 of 25 nucleoli monitored exhibit resonance which suggests that NR represents forced harmonic motion. Quantification of motion of nucleoli in differentiating, multinucleolate neurons showed that internucleolar distances may rapidly decrease, culminating in nucleolar fusion, and showed that nucleolar fusion was invariably associated with a transient increase in the rate of NR. These results indicate that nucleoli may move independently; that an association exists between rearrangement of chromatin domains and NR; and that NR, nucleolar fusion, and differentiation are linked.  相似文献   

16.
Cell-free extracts from animal Xenopus laevis egg could induce chromatin decondensation and pronuclear formation from demembranated plant (Orychophragmus violaceus) sperm. When incubated with Xenopus egg extracts, the demembranated sperm began to swell and then gradually decondensed. The assembly of the nuclear envelope in the reconstituted nuclei was visualized by means of electron microscopy and fluorescence microscopy. Membrane vesicles fused to form the double envelope around the periphery of the decondensed chromatin. The morphology of the newly formed nuclei, with a double membrane, was similar to that of nuclei after fertilization. The electron micrograph of the whole-mount prepared nuclear matrix--lamina showed the reconstituted nucleus to be filled with a dense network.  相似文献   

17.
Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs.  相似文献   

18.
SYNOPSIS. The ultrastructure of interphase and mitotic nuclei of the epimastigote form of Trypanosoma cyclops Weinman is described. In the interphase nucleus the nucleolus is located centrally while at the periphery of the nucleus condensed chromatin is in contact with the nuclear envelope. The nucleolus fragments at the onset of mitosis, but granular material of presumptive nucleolar origin is often recognizable in the mitotic nucleus. Peripheral chromatin is in contact with the nuclear envelope throughout mitosis, and it seems reasonable to assume that the nuclear envelope is involved in its segregation to the daughter nuclei. Spindle microtubules extend between the poles of the dividing nucleus and terminate close to the nuclear envelope. The basal body and kinetoplast divide before the onset of mitosis and do not appear to have any morphologic involvement in that process. Spindle pole bodies, kinetochores, and chromosomal microtubules have not been observed.  相似文献   

19.
R Winqvist  K Saksela    K Alitalo 《The EMBO journal》1984,3(12):2947-2950
The protein products of cellular and viral myc oncogenes are detected in nuclei by immunofluorescence. No myc fluorescence is found in nucleoli. In mitotic cells the myc antigens are not found associated with metaphase chromosomes, but are diffusely distributed throughout the cytoplasm. Cytoplasmic myc fluorescence is first observed when chromatin begins to condense in early prophase. Granular nuclear myc fluorescence is again discerned in telophase cells, when the nuclear envelope is formed and becomes more prominent upon cytokinesis; concomitantly the diffuse cytoplasmic myc staining is lost. These results suggest that myc proteins not only bind to DNA or chromatin, but are also associated with other structural systems in the nuclei.  相似文献   

20.
In situ nick-translation allows the visualization of nuclease-sensitive chromatin regions in interphase nuclei. We have analyzed the three-dimensional (3-D) distribution of DNase I-sensitive regions of chromatin in nuclei from mouse P19 embryonal carcinoma cells by making optical sections using confocal scanning laser microscopy. In undifferentiated as well as embryonal carcinoma cells differentiated in vitro, DNase I-sensitive regions of chromatin are observed as discrete spots in the nucleus. These spots represent clusters of DNase I-sensitive sites. By optical sectioning, we show that these spots are preferentially, but not exclusively, localized at the nuclear periphery. No differences were observed in the spatial distribution of DNase I-sensitive sites in P19 EC cells or the differentiated P19 END-2 cells. Furthermore, we did not observe differences in the distribution of DNase I-sensitive chromatin regions during the cell cycle. These findings indicate, at least for P19 mouse embryonal carcinoma cells and their differentiated derivative END-2, that the compartmentalization of DNase I-sensitive chromatin regions is a general characteristic of the nucleus, independent of cell cycle stage or differentiation state. Since evidence has been presented that DNase I-sensitive sites are associated with actively transcribed chromatin, our results indicate that active transcribing chromatin is compartmentalized, preferentially in the periphery of the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号