共查询到20条相似文献,搜索用时 0 毫秒
1.
U. Lönnendonker 《European biophysics journal : EBJ》1991,20(3):135-141
The use-dependent phasic blockage of sodium channels by tetrodotoxin (TTX) and saxitoxin (STX) was examined in frog nodes of Ranvier using trains of depolarizing pulses. The decline of the peak Na+ current from its initial value (I
0) before the train to a stationary value (I
) after the train was more pronounced at more negative holding potentials. The relationship betweenI
/I
0 and holding potential was fitted by a sigmoid function which yielded values for the steepness of the voltage dependencies of around –15 mV for TTX and – 8 mV for STX. Similar values were obtained at toxin concentrations of 4 and 8 nM. The higher voltage sensitivity of STX versus TTX is interpreted in terms of the higher charge and the faster binding kinetics of STX. These differences also explain the frequency dependence of the decline of Na+ currents with STX (between 0.5 and 2 Hz) and the frequency independence with TTX. Variation of the pulse amplitude in a train of conditioning pulses revealed that the magnitude of the use-dependent actions of STX parallels the steady-state Na+ inactivation curveh
. Inhibition of inactivation, by pre-treatment with chloramine-T, did not, however, abolish the use dependence. Instead, it introduced a change in the time constants of the decline of the Na+ currents and the magnitude became independent of the holding potential. 相似文献
2.
Ion fluxes in mammalian myelinated axons are restricted to the nodes of Ranvier, where, in particular, voltage-gated Na+ channels are clustered at a high density. The node of Ranvier is separated from the internode by two distinct domains of the axolemma, the paranode and the juxtaparanode. Each axonal domain is characterized by the presence of a specific protein complex. Although oligodendrocytes and/or myelin membranes are believed to play some instructive roles in the organization of axonal domains, the mechanisms leading to their localized distribution are not well understood. In this paper we focused on the involvement of myelin sheaths in this domain organization and examined the distribution of axonal components in the optic nerves of wild type, hypomyelinating jimpy mice and demyelinating PLP transgenic mice. The results showed that the clustering of Na+ channels does not require junction-like structures to be formed between the glial processes and axons, but requires mature oligodendrocytes to be present in close vicinity. 相似文献
3.
The interaction between neurons and glial cells that results in myelin formation represents one of the most remarkable intercellular
events in development. This is especially evident at the primary functional site within this structure, the node of Ranvier.
Recent experiments have revealed a surprising level of complexity within this zone, with several components, including ion
channels, sequestered with a very high degree of precision and sharply demarcated borders. We discuss the current state of
knowledge of the cellular and molecular mechanisms responsible for the formation and maintenance of the node. In normal axons,
Na+ channels are present at high density within the nodal gap, and voltage-dependent K+ channels are sequestered on the internodal side of the paranode—a region known as the juxtaparanode. Modifying the expression
of certain surface adhesion molecules that have been recently identified, markedly alters this pattern. There is a special
emphasis on contactin, a protein with multiple roles in the nervous system. In central nervous system (CNS) myelinated fibers,
contactin is localized within both the nodal gap and paranodes, and appears to have unique functions in each zone. New experiments
on contactin-null mutant mice help to define these mechanisms. 相似文献
4.
Many large organic cations are potent blockers of K(+) channels and other cation-selective channels belonging to the P-region superfamily. However, the mechanism by which large hydrophobic cations enter and exit the narrow pores of these proteins is obscure. Previous work has shown that a conserved Lys residue in the DEKA locus of voltage-gated Na(+) channels is an important determinant of Na(+)/K(+) discrimination, exclusion of Ca(2+), and molecular sieving of organic cations. In this study, we sought to determine whether the Lys(III) residue of the DEKA locus interacts with internal tetra-alkylammonium cations (TAA(+)) that block Na(+) channels in a voltage-dependent fashion. We investigated block by a series of TAA(+) cations of the wild-type rat muscle Na(+) channel (DEKA) and two different mutants of the DEKA locus, DEAA and DERA, using whole-cell recording. TEA(+) and larger TAA(+) cations block both wild-type and DEAA channels. However, DEAA exhibits dramatic relief of block by large TAA(+) cations as revealed by a positive inflection in the macroscopic I-V curve at voltages greater than +140 mV. Paradoxically, relief of block at high positive voltage is observed for large (e.g., tetrapentylammonium) but not small (e.g., TEA(+)) symmetrical TAA(+) cations. The DEKA wild-type channel and the DERA mutant exhibit a similar relief-of-block phenomenon superimposed on background current rectification. The results indicate: (a) hydrophobic TAA(+) cations with a molecular diameter as large as 15 A can permeate Na(+) channels from inside to outside when driven by high positive voltage, and (b) the Lys(III) residue of the DEKA locus is an important determinant of inward rectification and internal block in Na(+) channels. From these observations, we suggest that hydrophobic interfaces between subunits, pseudosubunits, or packed helices of P-region channel proteins may function in facilitating blocker access to the pore, and may thus play an important role in the blocking and permeation behavior of large TAA(+) cations and potentially other kinds of local anesthetic molecules. 相似文献
5.
Qu Y Karnabi E Chahine M Vassalle M Boutjdir M 《Biochemical and biophysical research communications》2007,355(1):28-33
BACKGROUND AND AIM: The action potential plateau of Purkinje fibers is particularly sensitive to tetrodotoxin (TTX) and this could be due to a TXX-sensitive Na(+) current. The expression of TTX-sensitive neuronal Na(V)1.1 and Na(V)1.2 isoforms has been reported in canine Purkinje myocytes. Our aim was to investigate by means of biochemical and functional techniques whether the TTX-sensitive skeletal Na(V)1.4 isoform is also expressed in canine cardiac Purkinje myocytes. METHODS AND RESULTS: Using Na(V)1.4 specific primers, a PCR product corresponding to Na(V)1.4 was amplified from canine Purkinje fibers RNA and confirmed by sequencing and megablast of the gene bank. Confocal indirect immunostaining using anti-Na(V)1.4 antibody demonstrates distinct sarcolemmal staining pattern compared to that of the cardiac isoform Na(V)1.5. Expression of Na(V)1.4 in tsA201 cells yielded a TTX-sensitive Na(+) current with an IC(50) of 10nM. CONCLUSIONS: These results demonstrate the expression of the TTX-sensitive Na(V)1.4 channel in canine cardiac Purkinje myocytes. This novel finding suggests a role of Na(V)1.4 channel in Purkinje myocytes and thus has important clinical implications for the mechanisms and management of ventricular arrhythmias originating in the Purkinje network. 相似文献
6.
《Bioscience, biotechnology, and biochemistry》2013,77(5):1088-1092
Enterococcus hirae grows in a broad pH range from 5 to 11. An E. hirae mutant 7683 lacking the activities of two sodium pumps, Na+-ATPase and Na+/H+ antiporter, does not grow in high Na+ medium at pH above 7.5. We found that 7683 grew normally in high Na+ medium at pH 5.5. Although an energy-dependent sodium extrusion at pH 5.5 was missing, the intracellular levels of Na+ and K+ were normal in this mutant. The Na+ influx rates of 7683 and two other strains at pH 5.5 were much slower than those at pH 7.5. These results suggest that Na+ elimination of this bacterium at acid pH is achieved by a decrease in Na+ entry and a normal K+ uptake. 相似文献
7.
Wenhui Wang Robert M. Henderson John Geibel Stanley White Gerhard Giebisch 《The Journal of membrane biology》1989,112(3):277-289
Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.We tested whether changes in intracellular pH (pH
i
) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH
i
and doubledgK+.Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.Aldosterone had no effect on the conductance or open probability (P
o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P
o was increased by raising pH.These results indicate that prolonged aldosterone treatment raises pH
i
and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH
i
and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney.
Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England 相似文献
8.
Summary The effect of papaverine, an inhibitor of the phosphodiesterase responsible for breakdown of cAMP, on the transepithelial sodium transport across the isolated frog skin was investigated.Serosal addition of papaverine caused initially an increase in the short-circuit current (SCC), a doubling of the cellular cAMP content and a depolarization of the intracellular potential under SCC conditions (V
scc).The initial increase in the SCC was followed by a pronounced decrease both in the SCC and in the natriferic action of antidiuretic hormone (ADH), but papaverine had no inhibitory effect on the ability of ADH to increase the cellular cAMP content. As SCC declines, no hyperpolarization was observed.The I/V relationship across the apical membrane during the inhibitory phase, revealed that papaverine reduces the sodium permeability of the apical membrane (P
Na
a
)as well as intracellular sodium concentration. These observations and the previously noted effect of papaverine on V
scc indicates that papaverine must have an effect on the cellular Cl or K permeability.The basolateral Na,K,2Cl cotransporter was blocked with bumetanide, which should bring the cellular chloride in equilibrium. Bumetanide had no effect on basal SCC and V
scc. When papaverine was added to skins preincubated with bumetanide, the effect of papaverine on SCC and V
scc was unchanged. Therefore, the depolarization of V
scc, observed during the papaverine induced inhibition of the SCC, must be due to a reduction in the cellular K permeability.In conclusion, it is suggested that papaverine reduces the sodium permeability of the apical membrane and the potassium permeability of the basolateral membrane of the frog skin epithelium. 相似文献
9.
J. R. Clay 《The Journal of membrane biology》1995,147(1):23-34
The mechanism of blockade of the delayed rectifier potassium ion channel in squid giant axons by intracellular quaternary ammonium ions (QA) appears to be remarkably sensitive to the structure of the blocker. TEA, propyltriethyl-ammonium (C3), and propyltetraethylammonium (TAA-C3) all fail to alter the deactivation, or tail current time course following membrane depolarization, even with relatively large concentrations of the blockers, whereas butyltriethylammonium (C4), butyltetraethylammonium (TAA-C4), and pentytriethyammonium (C5) clearly do have such an effect. The relative electrical distance of blockade for all of these ions is 0.25–0.3 from the inner surface of the membrane. The observations concerning TEA, C3, and TAAC3 suggest that these ions can block the channel in either its open or its closed state. The results with C4, TAA-C4, and C5 are consistent with the open channel block model. Moreover, the sensitivity of block mechanism to the structure of the blocker suggests that the gate is located close to the QA ion binding site and that TEA, C3, and TAA-C3 do not interfere with channel gating, whereas C4, TAA-C4, C5, and ions having a longer hydrophobic tail than C5 do have such an effect. The parameters of block obtained for all QA ions investigated were unaffected by changes in the extracellular potassium ion concentration.The author gratefully acknowledges Paul Guth of Cambridge Chemical for custom synthesis of the C
n compounds used in this study, Michael Rogawski for helpful discussion of this work, and Adam Sherman of Alembic Software and Vijay Kowtha for technical assistance in data acquisition and analysis. 相似文献
10.
Guo H. Zhang Edward J. Cragoe Jr. James E. Melvin 《The Journal of membrane biology》1992,129(3):311-321
The regulation of intracellular pH (pHi) in rat sublingual mucous acini was monitored using dual-wavelength microfluorometry of the pH-sensitive dye BCECF (2',7'-biscarboxyethyl-5(6)-carboxyfluorescein). Acini attached to coverslips and continuously superfused with HCO3(-)-containing medium (25 mM NaHCO3/5% CO2; pH 7.4) have a steady-state pHi of 7.25 +/- 0.02. Acid loading of acinar cells using the NH4+/NH3 prepulse technique resulted in a Na(+)-dependent, MIBA-inhibitable (5-(N-methyl-N-isobutyl) amiloride, Ki approximately 0.42 microM) pHi recovery, the kinetics of which were not influenced by the absence of extracellular Cl-. The rate and magnitude of the pHi recovery were dependent on the extracellular Na+ concentration, indicating that Na+/H+ exchange plays a critical role in maintaining pHi above the pH predicted for electrochemical equilibrium. When the NH4+/NH3 concentration was varied, the rate of pHi recovery was enhanced as the extent of the intracellular acidification increased, demonstrating that the activity of the Na+/H+ exchanger is regulated by the concentration of intracellular protons. Switching BCECF-loaded acini to a Cl(-)-free medium did not significantly alter resting pHi, suggesting the absence of Cl-/HCO3- exchange activity. Muscarinic stimulation resulted in a rapid and sustained cytosolic acidification (t 1/2 < 30 sec; 0.16 +/- 0.02 pH unit), the magnitude of which was amplified greater than two-fold in the presence of MIBA (0.37 +/- 0.05 pH unit) or in the absence of extracellular Na+ (0.34 +/- 0.03 pH unit). The agonist-induced intracellular acidification was blunted in HCO3(-)-free media and was inhibited by DPC (diphenylamine-2-carboxylate), an anion channel blocker. In contrast, the acidification was not influenced by removal of extracellular Cl-. The Ca2+ ionophore, ionomycin, mimicked the effects of stimulation, whereas preloading acini with BAPTA (bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid) to chelate intracellular Ca2+ blocked the agonist-induced cytoplasmic acidification. The above results indicate that during muscarinic stimulation an intracellular acidification occurs which: (i) is partially buffered by increased Na+/H+ exchange activity; (ii) is most likely mediated by HCO3- efflux via an anion channel; and (iii) requires an increase in cytosolic free [Ca2+]. 相似文献
11.
Summary Elementary Na+ currents through single cardiac Na+ channels were recorded at –50 mV in cell-attached patches from neonatal rat cardiocytes kept at holding potentials between –100 and –120 mV.Na+ channel activity may occur as burst-like, closely-timed repetitive openings with shut times close to 0.5–0.6 msec, indicating that an individual Na+ channel may reopen several times during step depolarization. A systematic quantiative analysis in 19 cell-attached patches showed that reopening may be quite differently pronounced. The majority, namely 16 patches, contained Na+ channels with a low tendency to reopen. This was evidenced from the average value for the mean number of openings per sequence, 2.5. Strikingly different results were obtained in a second group of three patches. Here, a mean number of openings per sequence of 3.42, 3.72, and 5.68 was found. Ensemble averages from the latter group of patches revealed macroscopic Na+ currents with a biexponential decay phase. Reconstructed Na+ currents from patches with poorly reopening Na+ channels were devoid of a slow decay component. This strongly suggests that reopening may be causally related to slow Na+ inactivation. Poorly pronounced reopening and, consequently, the lack of slow Na+ inactivation could be characteristic features of neonatal cardiac Na+ channels. 相似文献
12.
The interaction of a series of pyrethroids with the Na+ channel of mouse neuroblastoma cells has been followed using both an electrophysiological and a 22Na+ influx approach. By themselves, pyrethroids do not stimulate 22Na+ entry through the Na+ channel (or the stimulation they give is too small to be analyzed). However, they stimulate 22Na+ entry when used in conjuction with other toxins specific for the gating system of the channel. These include batrachotoxin, veratridine, dihydrograyanotoxin II or polypeptide toxins like sea anemone and scorpion toxins. This stimulatory effect is fully inhibited by tetrodotoxin with a dissociation constant of 1.6 nM for the tetrodotoxin-receptor complex. Half-maximum saturation of the pyrethroid receptor on the Na+ channel is observed in the micromolar range for the most active pyrethroids, Decis and RU 15525. The synergism observed between the effect of pyrethroids on 22Na+ influx on the one hand, and the effects of sea anemone toxin II, Androctonus scorpion toxin II, batrachotoxin, veratridine and dihydrograyanotoxin II on the other, indicates that the binding component for pyrethroids on the Na+ channel is distinct from the other toxin receptors. It is also distinct from the tetrodotoxin receptor.Some of the pyrethroids used in this study bind to the Na+ channel but are unable to stimulate 22Na+ entry. These inactive compounds behave as antagonists of the active pyrethroids.An electrophysiological approach has shown that pyrethroids by themselves are active on the Na+ channel of mammalian neurones, and essentially confirm the conclusions made from 22Na+ flux measurements.Pyrethroids are also active on C9 cells in which Na+ channels are ‘silent’, that is, not activatable by electrical stimulation. Pyrethroids chemically activate the silent Na+ channel in a manner similar to that with veratridine, batrachotoxin, or polypeptide toxins, which are known to slow down the inactivation process of a functional Na+ channel. 相似文献
13.
14.
Tateki Hayashi Mitsuo Namiki Keiichi Tsuji 《Bioscience, biotechnology, and biochemistry》2013,77(9):1955-1960
During the formation of radical A (2) and its precursor (tris(2-deoxy-2-L-ascorbyl)amine, 1) by the reaction of dehydroascorbic acid (DHA) with amino acid, ascorbic acid (AsA) and the reduced red pigment (3) were newly identified, in addition to scorbamic acid (SCA) and the red pigment (4), as intermediate products. The addition of AsA to the DHA-amino acid reaction, as well as to the DHA-SCA reaction, greatly increased the formation of 3 and 1. The reaction of AsA with 4 gave rapidly 3, followed by the gradual production of 1. From these results, a reaction pathway is proposed that 3 formed by the reduction of 4 with AsA is a key intermediate and its condensation with DHA followed by reduction with AsA might produce 2 and 1. 相似文献
15.
The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca(2+) and Mg(2+) that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude, the potency being significantly higher for Ca(2+) than Mg(2+) (K(1/2) approximately 16 and 61 mM, respectively, at V(m) = -30 mV). Neither cation is measurably permeant. Manipulating the concentration of permeant K ions affects the blockade, suggesting that the mechanism entails occlusion of the permeation pathway. The voltage dependency of Ca(2+) block is consistent with a single binding site located at an electrical distance of delta approximately 0.6 from the outside. Resolution of light-dependent single-channel currents under physiological conditions indicates that blockade must be slow, which prompted the use of perturbation/relaxation methods to analyze its kinetics. Voltage steps during illumination produce a distinct relaxation in the photocurrent (tau = 5-20 ms) that disappears on removal of Ca(2+) and Mg(2+) and thus reflects enhancement or relief of blockade, depending on the polarity of the stimulus. The equilibration kinetics are significantly faster with Ca(2+) than with Mg(2+), suggesting that the process is dominated by the "on" rate, perhaps because of a step requiring dehydration of the blocking ion to access the binding site. Complementary strategies were adopted to investigate the interaction between blockade and channel gating: the photocurrent decay accelerates with hyperpolarization, but the effect requires extracellular divalents. Moreover, conditioning voltage steps terminated immediately before light stimulation failed to affect the photocurrent. These observations suggest that equilibration of block at different voltages requires an open pore. Inducing channels to close during a conditioning hyperpolarization resulted in a slight delay in the rising phase of a subsequent light response; this effect can be interpreted as closure of the channel with a divalent ion trapped inside. 相似文献
16.
Two K+
ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating
and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+
ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+
ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this
channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+
ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied. 相似文献
17.
The aim of this study is to follow the thermodynamic behaviour of Na+ ions, acting as natural counterions of DNA, in the presence of divalent metal ions, by using the23Na NMR technique. With the help of the23Na entropy of fluctuations concept introduced by Lenk, we propose the following decreasing sequence: Mg++, Zn++, Cd++, Mn++, and Cu++, for the magnitude of divalent metal ions interactions with DNA phosphate sites. 相似文献
18.
Rosemary Wangensteen Isabel Rodríguez-Gómez Rocío Perez-Abud Andrés Quesada Sebastián Montoro-Molina Antonio Osuna Félix Vargas 《Experimental biology and medicine (Maywood, N.J.)》2015,240(1):113-120
This study assessed the impact of salt restriction on cardiac morphology and biochemistry and its effects on hemodynamic and renal variables in experimental hyperthyroidism. Four groups of male Wistar rats were used: control, hyperthyroid, and the same groups under low salt intake. Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 4 weeks. Morphologic, metabolic, plasma, cardiac, and renal variables were also measured. Low salt intake decreased BP in T4-treated rats but not in controls. Low salt intake reduced relative left ventricular mass but increased absolute right ventricular weight and right ventricular weight/BW ratio in both control and hyperthyroid groups. Low salt intake increased Na+/H+ exchanger-1 (NHE-1) protein abundance in both ventricles in normal rats but not in hyperthyroid rats, independently of its effect on ventricular mass. Mammalian target of rapamycin (mTOR) protein abundance was not related to left or right ventricular mass in hyperthyroid or controls rats under normal or low salt conditions. Proteinuria was increased in hyperthyroid rats and attenuated by low salt intake. In this study, low salt intake produced an increase in right ventricular mass in normal and hyperthyroid rats. Changes in the left or right ventricular mass of control and hyperthyroid rats under low salt intake were not explained by the NHE-1 or mTOR protein abundance values observed. In hyperthyroid rats, low salt intake also slightly reduced BP and decreased HR, proteinuria, and water and sodium balances. 相似文献
19.
F Gómez-Lagunas 《The Journal of general physiology》2001,118(6):639-648
The Shaker B K(+) conductance (G(K)) collapses (in a reversible manner) if the membrane is depolarized and then repolarized in, 0 K(+), Na(+)-containing solutions (Gómez-Lagunas, F. 1997. J. Physiol. 499:3-15; Gómez-Lagunas, F. 1999. Biophys. J. 77:2988-2998). In this work, the role of Na(+) ions in the collapse of G(K) in 0-K(+) solutions, and in the behavior of the channels in low K(+) was studied. The main findings are as follows. First, in 0-K(+) solutions, the presence of Na(+) ions is an important factor that speeds the collapse of G(K). Second, external Na(+) fosters the drop of G(K) by binding to a site with a K(d) = 3.3 mM. External K(+) competes, in a mutually exclusive manner, with Na(o)(+) for binding to this site, with an estimated K(d) = 80 microM. Third, NMG and choline are relatively inert regarding the stability of G(K); fourth, with [K(o)(+)] = 0, the energy required to relieve Na(i)(+) block of Shaker (French, R.J., and J.B. Wells. 1977. J. Gen. Physiol. 70:707-724; Starkus, J.G., L. Kuschel, M. Rayner, and S. Heinemann. 2000. J. Gen. Physiol. 110:539-550) decreases with the molar fraction of Na(i)(+) (X(Na,i)), in an extent not accounted for by the change in Delta(mu)(Na). Finally, when X(Na,i) = 1, G(K) collapses by the binding of Na(i)(+) to two sites, with apparent K(d)s of 2 and 14.3 mM. 相似文献
20.
Toshiaki Koizumi Toshiki Yokota Mikiko Fukuchi Hideki Tatsumoto Yasuhiro Yamane 《Cell biology and toxicology》1991,7(4):357-369
In order to clarify the protective mechanism of sodium molybdate against the acute toxicity of cadmium chloride in rat, the effect of in vivo sodium molybdate pretreatment on the cytotoxic action of cadmium in isolated hepatocytes was studied. The cytosolic pH of hepatocytes isolated from untreated rats immediately decreased with incubation in either neutral Hank's balanced salt solution (HBS), pH 7.4, containing 5 µM cadmium chloride minimum or acidic HBS (pH 7.1, 6.8, 6.5, and 6.2). The presence of 5 µM cadmium in HBS adjusted to pH 7.1 aggravated cytosalic acidification induced by the acidic medium alone. Cell viability of hepatocytes incubated in HBS at pH 6.2 was significantly reduced as compared to that of control cells in HBS at pH 7.4, but the presence of cadmium in the acidic HBS had no aggravating action against such a toxic action of the acidic medium although cellular uptake of the metal in the medium increased, as compared to that in HBS at pH 7.4. Molybdenum pretreatment alleviated cytoplasmic acidification induced by the treatment with HBS at pH 7.4 or 7.1 containing cadmium or by extracellular acid load wothout cadmium. This pretreatment also prevented the loss of cell viability induced by the treatment with HBS at pH 6.2 but could not attenuate that when cadmium was present in the medium.These facts suggest that molybdenum pretreatment alleviated the acute toxicity of cadmium in rat by preventing cytoplasmic acidification caused by the harmful metal. 相似文献