首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin‐like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins.  相似文献   

2.
肽聚糖的生物合成及其调控机制研究进展   总被引:1,自引:0,他引:1  
肽聚糖(peptidoglycan)是细菌细胞壁的重要组成部分,对于维持细胞形态、大小及存活至关重要;同时,肽聚糖是众多常用抗生素的作用靶点。在细菌的正常生长过程中,肽聚糖不断地合成和水解,为了保证细胞壁的完整性,肽聚糖生物合成过程必然受到严谨的时空调控。肽聚糖的生物合成及其调控机制是微生物学中重要的基础研究之一,近年来国内外研究团队在该领域取得了突破性研究进展。基于此,本文综述了肽聚糖的从头合成和循环再利用过程,并重点阐述了肽聚糖合成关键酶——肽聚糖合酶及其调控机制的最新研究进展。最后,本文对未来需要加强研究的方向进行了展望。  相似文献   

3.
Summary: The phenomenon of peptidoglycan recycling is reviewed. Gram-negative bacteria such as Escherichia coli break down and reuse over 60% of the peptidoglycan of their side wall each generation. Recycling of newly made peptidoglycan during septum synthesis occurs at an even faster rate. Nine enzymes, one permease, and one periplasmic binding protein in E. coli that appear to have as their sole function the recovery of degradation products from peptidoglycan, thereby making them available for the cell to resynthesize more peptidoglycan or to use as an energy source, have been identified. It is shown that all of the amino acids and amino sugars of peptidoglycan are recycled. The discovery and properties of the individual proteins and the pathways involved are presented. In addition, the possible role of various peptidoglycan degradation products in the induction of β-lactamase is discussed.  相似文献   

4.

Background  

Previous studies have revealed that the lysin motif (LysM) domains of bacterial cell wall-degrading enzymes are able to bind to peptidoglycan moieties of the cell wall. This suggests an approach for a cell surface display system in Gram-positive bacteria using a LysM-containing protein as the anchoring motif. In this study, we developed a new surface display system in B. thuringiensis using a LysM-containing peptidoglycan hydrolase, endo-β-N-acetylglucosaminidase (Mbg), as the anchor protein.  相似文献   

5.
The covalent anchoring of surface proteins to the cell wall envelope of Gram-positive bacteria occurs by a universal mechanism requiring sortases, extracellular transpeptidases that are positioned in the plasma membrane. Surface protein precursors are first initiated into the secretory pathway of Gram-positive bacteria via N-terminal signal peptides. C-terminal sorting signals of surface proteins, bearing an LPXTG motif or other recognition sequences, provide for sortase-mediated cleavage and acyl enzyme formation, a thioester linkage between the active site cysteine residue of sortase and the C-terminal carboxyl group of cleaved surface proteins. During cell wall anchoring, sortase acyl enzymes are resolved by the nucleophilic attack of peptidoglycan substrates, resulting in amide bond formation between the C-terminal end of surface proteins and peptidoglycan cross-bridges within the bacterial cell wall envelope. The genomes of Gram-positive bacteria encode multiple sortase genes. Recent evidence suggests that sortase enzymes catalyze protein anchoring reactions of multiple different substrate classes with different sorting signal motif sequences, protein linkage to unique cell wall anchor structures as well as protein polymerization leading to the formation of pili on the surface of Gram-positive bacteria.  相似文献   

6.
Bacterial peptidoglycan (murein) hydrolases   总被引:4,自引:0,他引:4  
Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter cells during cell division and autolysis. Specialized hydrolases enlarge the pores in the peptidoglycan for the assembly of large trans-envelope complexes (pili, flagella, secretion systems), or they specifically cleave peptidoglycan during sporulation or spore germination. Moreover, peptidoglycan hydrolases are involved in lysis phenomena such as fratricide or developmental lysis occurring in bacterial populations. We will also review the current view on the regulation of autolysins and on the role of cytoplasm hydrolases in peptidoglycan recycling and induction of beta-lactamase.  相似文献   

7.
Bacteriolytic enzymes (cell lytic enzymes) are promising alternatives to antibiotics especially in killing drug-resistant bacteria. However, some bacteria slowly become resistant to various classes of peptidoglycan hydrolases, for reasons not well studied, in the presence of growth-supporting nutrients, which are prevalent at sites of infection. Here, we show that Staphylococcus aureus, a human and animal pathogen, while susceptible to the potent staphylolytic enzyme lysostaphin (Lst) in buffered saline, is highly resistant in the rich medium tryptic soy broth (TSB). Through a series of biochemical analysis, we identified that the resistance was due to prevention of Lst-cell binding mediated by the wall teichoic acids (WTAs) present on the cell surface. Inhibition or deletion of the gene tarO responsible for the first step of WTA biosynthesis greatly reduced S. aureus resistance to Lst in TSB. To overcome the resistance, we took advantage of the gene regulation potential of CRISPR-dCas9 and demonstrated that downregulation of tarO, tarH, and/or tarG gene expression, the latter two encoding enzymes that anchor WTAs in the outer layer of cell wall peptidoglycan, sensitized S. aureus to Lst and enabled eradication of the bacterium in TSB in 24 hr. As a result, we elucidate a key mechanism of Lst resistance in metabolically active S. aureus and provide a potential approach for treating life-threatening or hard-to-treat infections caused by Gram-positive pathogens.  相似文献   

8.
Bacterial surface proteins are key players in host-symbiont or host-pathogen interactions. How these proteins are targeted and displayed at the cell surface are challenging issues of both fundamental and clinical relevance. While surface proteins of Gram-negative bacteria are assembled in the outer membrane, Gram-positive bacteria predominantly utilize their thick cell wall as a platform to anchor their surface proteins. This surface display involves both covalent and noncovalent interactions with either the peptidoglycan or secondary wall polymers such as teichoic acid or lipoteichoic acid. This review focuses on the role of enzymes that covalently link surface proteins to the peptidoglycan, the well-known sortases in Gram-positive bacteria, and the recently characterized l,d-transpeptidases in Gram-negative bacteria.  相似文献   

9.
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.  相似文献   

10.
The cell wall of bacteria induces proinflammatory cytokines in monocytes and neutrophils in human blood. The nature of the stimulating component of bacterial cell walls is not well understood. We have previously shown polymeric peptidoglycan (PGN) has this activity, and the cytokine response requires PGN internalization and trafficking to lysosomes. In this study, we demonstrate that peptidoglycan monomers such as muramyl dipeptide and soluble peptidoglycan fail to induce robust cytokine production in immune cells, although they activate the nucleotide-binding oligomerization domain proteins in transfected cell models. We further show that lysosomal extracts from immune cells degrade intact peptidoglycan into simpler products and that the lysosomal digestion products activate the nucleotide-binding oligomerization domain proteins. We conclude that naive innate immune cells recognize PGN in its polymeric form rather than monomers such as muramyl dipeptide and require PGN lysosomal hydrolysis to respond. These findings offer new opportunities in the treatment of sepsis, especially sepsis arising from Gram-positive organisms.  相似文献   

11.
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.  相似文献   

12.
A common feature of walled organisms is their exposure to osmotic forces that challenge the mechanical integrity of cells while driving elongation. Most bacteria rely on their cell wall to bear osmotic stress and determine cell shape. Wall thickness can vary greatly among species, with Gram-positive bacteria having a thicker wall than Gram-negative bacteria. How wall dimensions and mechanical properties are regulated and how they affect growth have not yet been elucidated. To investigate the regulation of wall thickness in the rod-shaped Gram-positive bacterium Bacillus subtilis, we analyzed exponentially growing cells in different media. Using transmission electron and epifluorescence microscopy, we found that wall thickness and strain were maintained even between media that yielded a threefold change in growth rate. To probe mechanisms of elongation, we developed a biophysical model of the Gram-positive wall that balances the mechanical effects of synthesis of new material and removal of old material through hydrolysis. Our results suggest that cells can vary their growth rate without changing wall thickness or strain by maintaining a constant ratio of synthesis and hydrolysis rates. Our model also indicates that steady growth requires wall turnover on the same timescale as elongation, which can be driven primarily by hydrolysis rather than insertion. This perspective of turnover-driven elongation provides mechanistic insight into previous experiments involving mutants whose growth rate was accelerated by the addition of lysozyme or autolysin. Our approach provides a general framework for deconstructing shape maintenance in cells with thick walls by integrating wall mechanics with the kinetics and regulation of synthesis and turnover.  相似文献   

13.
Reith J  Mayer C 《Journal of bacteriology》2011,193(19):5393-5399
Many bacteria, in particular Gram-positive bacteria, contain high proportions of non-N-acetylated amino sugars, i.e., glucosamine (GlcN) and/or muramic acid, in the peptidoglycan of their cell wall, thereby acquiring resistance to lysozyme. However, muramidases with specificity for non-N-acetylated peptidoglycan have been characterized as part of autolytic systems such as of Clostridium acetobutylicum. We aim to elucidate the recovery pathway for non-N-acetylated peptidoglycan fragments and present here the identification and characterization of an acetyltransferase of novel specificity from C. acetobutylicum, named GlmA (for glucosamine/glucosaminide N-acetyltransferase). The enzyme catalyzes the specific transfer of an acetyl group from acetyl coenzyme A to the primary amino group of GlcN, thereby generating N-acetylglucosamine. GlmA is also able to N-acetylate GlcN residues at the nonreducing end of glycosides such as (partially) non-N-acetylated peptidoglycan fragments and β-1,4-glycosidically linked chitosan oligomers. Km values of 114, 64, and 39 μM were determined for GlcN, (GlcN)2, and (GlcN)3, respectively, and a 3- to 4-fold higher catalytic efficiency was determined for the di- and trisaccharides. GlmA is the first cloned and biochemically characterized glucosamine/glucosaminide N-acetyltransferase and a member of the large GCN5-related N-acetyltransferases (GNAT) superfamily of acetyltransferases. We suggest that GlmA is required for the recovery of non-N-acetylated muropeptides during cell wall rescue in C. acetobutylicum.  相似文献   

14.
The capsular turnover product of Staphylococcus aureus strain Smith   总被引:1,自引:0,他引:1  
Abstract The capsular polysaccharide released from the bacterial surface by cell wall turnover during growth exhibited less size heterogeneity and a higher average molecular mass than the polysaccharide extracted from the cell by treatment with lysostaphin or low pH. Treatment of turnover polysaccharide, radiolabelled by growth of the bacteria in the presence of N-acetyl-[3H]-glucosamine, with muramidase B from Chalaropsis released a low molecular weight product chromatographically identical to the peptidoglycan degradation products released from the peptidoglycan-teichoic acid complex by the same treatment. It is concluded that some or all of the capsular polysaccharide released into the culture fluid during growth is derived from peptidoglycan-linked capsular material, solubilised by cell wall turnover.  相似文献   

15.
The plant pentacyclic triterpenoids, oleanolic and ursolic acids, inhibit the growth and survival of many bacteria, particularly Gram-positive species, including pathogenic ones. The effect of these compounds on the facultative human pathogen Listeria monocytogenes was examined. Both acids affected cell morphology and enhanced autolysis of the bacterial cells. Autolysis of isolated cell walls was inhibited by oleanolic acid, but the inhibitory activity of ursolic acid was less pronounced. Both compounds inhibited peptidoglycan turnover and quantitatively affected the profile of muropeptides obtained after digestion of peptidoglycan with mutanolysin. These results suggest that peptidoglycan metabolism is a cellular target of oleanolic and ursolic acids.  相似文献   

16.
The study of the extracellular bacteriolytic enzymes of Lysobacter sp. showed that they can efficiently hydrolyze the peptidoglycan of gram-positive bacteria provided that there is an electrostatic interaction of these enzymes with the cell wall anionic polymers, teichoic and teichuronic acids in particular. The hydrolytic action of bacteriolytic enzymes on the cell wall largely depends on the negative charge of the teichoic and teichuronic acids rather than on their chemical composition.  相似文献   

17.
The kinetics of cell wall turnover in Bacillus subtilis have been examined in detail. After pulse labeling of the peptidoglycan with N-acetylglucosamine, the newly formed peptidoglycan is stable for approximately three-quarters of a generation and is then degraded by a process that follows first-order kinetics. Deprivation of an auxotroph of amino acids required for protein synthesis results in a cessation of turnover. If a period of amino acid starvation occurs during the lag phase of turnover, then the initiation of turnover is delayed for a period of time equivalent to the starvation period. During amino acid starvation, new cell wall peptidoglycan is synthesized and added to preexisting cell wall. This peptidoglycan after resumption of growth is also subject to degradation (turnover). It is suggested that cell wall turnover is dependent on cell growth and elongation. Several possible control mechanisms for cell wall autolytic enzymes are discussed in light of these observations.  相似文献   

18.
The peptidoglycan that surrounds Gram‐positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytR‐CpsA‐Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton‐That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromolecules to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell‐based tool to discover inhibitors of this important enzyme family.  相似文献   

19.
Surface proteins in Gram-positive bacteria are frequently implicated in virulence. We have focused on a group of extracellular cell wall-attached proteins (CWPs), containing an LPXTG motif for cleavage and covalent coupling to peptidoglycan by sortase enzymes. A hidden Markov model (HMM) approach for predicting the LPXTG-anchored cell wall proteins of Gram-positive bacteria was developed and compared against existing methods. The HMM model is parsimonious in terms of the number of freely estimated parameters, and it has proved to be very sensitive and specific in a training set of 55 experimentally verified LPXTG-anchored cell wall proteins as well as in reliable data sets of globular and transmembrane proteins. In order to identify such proteins in Gram-positive bacteria, a comprehensive analysis of 94 completely sequenced genomes has been performed. We identified, in total, 860 LPXTG-anchored cell wall proteins, a number that is significantly higher compared to those obtained by other available methods. Of these proteins, 237 are hypothetical proteins according to the annotation of SwissProt, and 88 had no homologs in the SwissProt database--this might be evidence that they are members of newly identified families of CWPs. The prediction tool, the database with the proteins identified in the genomes, and supplementary material are available online at http://bioinformatics.biol.uoa.gr/CW-PRED/.  相似文献   

20.
Inside-to-outside growth and turnover of the wall of gram-positive rods   总被引:17,自引:0,他引:17  
Gram-positive, rod-shaped bacteria, given a pulse of peptidoglycan precursors, first exhibit a lag before the second or turnover phase of peptidoglycan commences. This is because new material is inserted on the inner face of the wall and gradually displaced through the wall. Based on this experimental observation, a mathematical model was constructed and compared with experimental data obtained in several laboratories for the first and second phases of wall turnover of Bacillus subtilis. The model allows the parameters of the process to be estimated for experiments with any labeling time. According to the surface stress theory the wall which is layed down immediately outside the cytoplasmic layer is in an unextended conformation. As subsequent additions of murein occur, the wall moves outward, becomes stretched, and bears the stress due to hydrostatic pressure. Ultimately, peptide and glycosyl bonds become cleaved. At the end of the lag phase the cleavage becomes so extensive that wall fragments are liberated into the medium. This strategy permits rod-shaped growth. In some experimental situations the half-life of wall radioactivity in this second phase roughly equals the doubling time; consequently, the exponential release probably does not represent random turnover but instead is the result of expansion of the underlying wall that continues to create strain which favors autolysis action. The slower turnover of the third phase, where there is a much slower loss, is also included in the analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号