首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innovative biomedical librarians and information specialists who want to expand their roles as expert searchers need to know about profound changes in biology and parallel trends in text mining. In recent years, conceptual biology has emerged as a complement to empirical biology. This is partly in response to the availability of massive digital resources such as the network of databases for molecular biologists at the National Center for Biotechnology Information. Developments in text mining and hypothesis discovery systems based on the early work of Swanson, a mathematician and information scientist, are coincident with the emergence of conceptual biology. Very little has been written to introduce biomedical digital librarians to these new trends. In this paper, background for data and text mining, as well as for knowledge discovery in databases (KDD) and in text (KDT) is presented, then a brief review of Swanson's ideas, followed by a discussion of recent approaches to hypothesis discovery and testing. 'Testing' in the context of text mining involves partially automated methods for finding evidence in the literature to support hypothetical relationships. Concluding remarks follow regarding (a) the limits of current strategies for evaluation of hypothesis discovery systems and (b) the role of literature-based discovery in concert with empirical research. Report of an informatics-driven literature review for biomarkers of systemic lupus erythematosus is mentioned. Swanson's vision of the hidden value in the literature of science and, by extension, in biomedical digital databases, is still remarkably generative for information scientists, biologists, and physicians.  相似文献   

2.
Frontiers of biomedical text mining: current progress   总被引:3,自引:0,他引:3  
It is now almost 15 years since the publication of the first paper on text mining in the genomics domain, and decades since the first paper on text mining in the medical domain. Enormous progress has been made in the areas of information retrieval, evaluation methodologies and resource construction. Some problems, such as abbreviation-handling, can essentially be considered solved problems, and others, such as identification of gene mentions in text, seem likely to be solved soon. However, a number of problems at the frontiers of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or 'BioNLP' in general, focusing primarily on papers published within the past year.  相似文献   

3.
A survey of current work in biomedical text mining   总被引:3,自引:0,他引:3  
The volume of published biomedical research, and therefore the underlying biomedical knowledge base, is expanding at an increasing rate. Among the tools that can aid researchers in coping with this information overload are text mining and knowledge extraction. Significant progress has been made in applying text mining to named entity recognition, text classification, terminology extraction, relationship extraction and hypothesis generation. Several research groups are constructing integrated flexible text-mining systems intended for multiple uses. The major challenge of biomedical text mining over the next 5-10 years is to make these systems useful to biomedical researchers. This will require enhanced access to full text, better understanding of the feature space of biomedical literature, better methods for measuring the usefulness of systems to users, and continued cooperation with the biomedical research community to ensure that their needs are addressed.  相似文献   

4.
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.  相似文献   

5.
Recent advances in DNA sequencing technology have allowed the collection of high-dimensional data from human-associated microbial communities on an unprecedented scale. A major goal of these studies is the identification of important groups of microorganisms that vary according to physiological or disease states in the host, but the incidence of rare taxa and the large numbers of taxa observed make that goal difficult to obtain using traditional approaches. Fortunately, similar problems have been addressed by the machine learning community in other fields of study such as microarray analysis and text classification. In this review, we demonstrate that several existing supervised classifiers can be applied effectively to microbiota classification, both for selecting subsets of taxa that are highly discriminative of the type of community, and for building models that can accurately classify unlabeled data. To encourage the development of new approaches to supervised classification of microbiota, we discuss several structures inherent in microbial community data that may be available for exploitation in novel approaches, and we include as supplemental information several benchmark classification tasks for use by the community.  相似文献   

6.
This article collects opinions from leading scientists about how text mining can provide better access to the biological literature, how the scientific community can help with this process, what the next steps are, and what role future BioCreative evaluations can play. The responses identify several broad themes, including the possibility of fusing literature and biological databases through text mining; the need for user interfaces tailored to different classes of users and supporting community-based annotation; the importance of scaling text mining technology and inserting it into larger workflows; and suggestions for additional challenge evaluations, new applications, and additional resources needed to make progress.  相似文献   

7.
目的:近年来,随着生物医学领域文献数量的急骤增长,大量隐含的规律和新知被掩埋在浩如烟海的文献之中,而将文本挖掘技术应用于生物医学领域则可以对海量生物医学文献数据进行整合、分析,从而获得有价值的信息,提高人们对生物医学现象的认识。本文就我国近十年来文本挖掘技术在生物医学领域的应用现状进行文献计量学分析,旨在为我国科研工作者对该领域的进一步研究提供参考。方法:对国内正式发表的生物医学领域文本挖掘相关文献进行检索和筛选,分别从年度变化、地区分布、研究机构、期刊来源、研究领域等方面进行分析。结果:国内生物医学文本挖掘文献总量呈上升趋势,主要集中在挖掘算法的研究和文本挖掘技术在中医药及系统生物学领域的应用方面;北京、上海、广东等地的研究处于领先地位。结论:相比其他较为成熟的研究课题来说,目前文本挖掘技术在生物医学中的应用在国内还属于一个比较新的研究领域,但国内对该领域的认识正不断提高、研究正不断深入,初步形成了一批在该领域的核心研究地区、核心研究机构和核心研究领域,而对其进一步的研究,必将为生物医学领域的发展注入新的活力。  相似文献   

8.
Inflammation is a complex, multi-scale biologic response to stress that is also required for repair and regeneration after injury. Despite the repository of detailed data about the cellular and molecular processes involved in inflammation, including some understanding of its pathophysiology, little progress has been made in treating the severe inflammatory syndrome of sepsis. To address the gap between basic science knowledge and therapy for sepsis, a community of biologists and physicians is using systems biology approaches in hopes of yielding basic insights into the biology of inflammation. “Systems biology” is a discipline that combines experimental discovery with mathematical modeling to aid in the understanding of the dynamic global organization and function of a biologic system (cell to organ to organism). We propose the term translational systems biology for the application of similar tools and engineering principles to biologic systems with the primary goal of optimizing clinical practice. We describe the efforts to use translational systems biology to develop an integrated framework to gain insight into the problem of acute inflammation. Progress in understanding inflammation using translational systems biology tools highlights the promise of this multidisciplinary field. Future advances in understanding complex medical problems are highly dependent on methodological advances and integration of the computational systems biology community with biologists and clinicians.  相似文献   

9.
With biomedical literature increasing at a rate of several thousand papers per week, it is impossible to keep abreast of all developments; therefore, automated means to manage the information overload are required. Text mining techniques, which involve the processes of information retrieval, information extraction and data mining, provide a means of solving this. By adding meaning to text, these techniques produce a more structured analysis of textual knowledge than simple word searches, and can provide powerful tools for the production and analysis of systems biology models.  相似文献   

10.
Currently, literature is integrated in systems biology studies in three ways. Hand-curated pathways have been sufficient for assembling models in numerous studies. Second, literature is frequently accessed in a derived form, such as the concepts represented by the Medical Subject Headings (MeSH) and Gene Ontologies (GO), or functional relationships captured in protein-protein interaction (PPI) databases; both of these are convenient, consistent reductions of more complex concepts expressed as free text in the literature. Moreover, their contents are easily integrated into computational processes required for dealing with large data sets. Last, mining text directly for specific types of information is on the rise as text analytics methods become more accurate and accessible. These uses of literature, specifically manual curation, derived concepts captured in ontologies and databases, and indirect and direct application of text mining, will be discussed as they pertain to systems biology.  相似文献   

11.
Accomplishments and challenges in literature data mining for biology   总被引:3,自引:0,他引:3  
We review recent results in literature data mining for biology and discuss the need and the steps for a challenge evaluation for this field. Literature data mining has progressed from simple recognition of terms to extraction of interaction relationships from complex sentences, and has broadened from recognition of protein interactions to a range of problems such as improving homology search, identifying cellular location, and so on. To encourage participation and accelerate progress in this expanding field, we propose creating challenge evaluations, and we describe two specific applications in this context.  相似文献   

12.
Computational Biology needs computer-readable information records. Increasingly, meta-analysed and pre-digested information is being used in the follow up of high throughput experiments and other investigations that yield massive data sets. Semantic enrichment of plain text is crucial for computer aided analysis. In general people will think about semantic tagging as just another form of text mining, and that term has quite a negative connotation in the minds of some biologists who have been disappointed by classical approaches of text mining. Efforts so far have tried to develop tools and technologies that retrospectively extract the correct information from text, which is usually full of ambiguities. Although remarkable results have been obtained in experimental circumstances, the wide spread use of information mining tools is lagging behind earlier expectations. This commentary proposes to make semantic tagging an integral process to electronic publishing.  相似文献   

13.
Text mining and ontologies in biomedicine: making sense of raw text   总被引:1,自引:0,他引:1  
The volume of biomedical literature is increasing at such a rate that it is becoming difficult to locate, retrieve and manage the reported information without text mining, which aims to automatically distill information, extract facts, discover implicit links and generate hypotheses relevant to user needs. Ontologies, as conceptual models, provide the necessary framework for semantic representation of textual information. The principal link between text and an ontology is terminology, which maps terms to domain-specific concepts. This paper summarises different approaches in which ontologies have been used for text-mining applications in biomedicine.  相似文献   

14.
15.
A renaissance in organismal biology has been sparked by recent conceptual, theoretical, methodological, and computational advances in the life sciences, along with an unprecedented interdisciplinary integration with Mathematics, Engineering, and the physical sciences. Despite a decades-long trend toward reductionist approaches to biological problems, it is increasingly recognized that whole organisms play a central role in organizing and interpreting information from across the biological spectrum. Organisms represent the nexus where sub- and supra-organismal processes meet, and it is the performance of organisms within the environment that provides the material for natural selection. Here, we identify five "grand challenges" for future research in organismal biology. It is intended that these challenges will spark further discussion in the broader community and identify future research priorities, opportunities, and directions, which will ultimately help to guide the allocation of support for and training in organismal biology.  相似文献   

16.
About five years ago, ontology was almost unknown in bioinformatics, even more so in molecular biology. Nowadays, many bioinformatics articles mention it in connection with text mining, data integration or as a metaphysical cure for problems in standardisation of nomenclature and other applications. This article attempts to give an account of what concept ontologies in the domain of biology and bioinformatics are; what they are not; how they can be constructed; how they can be used; and some fallacies and pitfalls creators and users should be aware of.  相似文献   

17.

Background  

Researchers who use MEDLINE for text mining, information extraction, or natural language processing may benefit from having a copy of MEDLINE that they can manage locally. The National Library of Medicine (NLM) distributes MEDLINE in eXtensible Markup Language (XML)-formatted text files, but it is difficult to query MEDLINE in that format. We have developed software tools to parse the MEDLINE data files and load their contents into a relational database. Although the task is conceptually straightforward, the size and scope of MEDLINE make the task nontrivial. Given the increasing importance of text analysis in biology and medicine, we believe a local installation of MEDLINE will provide helpful computing infrastructure for researchers.  相似文献   

18.
MOTIVATION: Negative information about protein-protein interactions--from uncertainty about the occurrence of an interaction to knowledge that it did not occur--is often of great use to biologists and could lead to important discoveries. Yet, to our knowledge, no proposals focusing on extracting such information have been proposed in the text mining literature. RESULTS: In this work, we present an analysis of the types of negative information that is reported, and a heuristic-based system using a full dependency parser to extract such information. We performed a preliminary evaluation study that shows encouraging results of our system. Finally, we have obtained an initial corpus of negative protein-protein interactions as basis for the construction of larger ones. AVAILABILITY: The corpus is available by request from the authors.  相似文献   

19.
Arguably, the richest source of knowledge (as opposed to fact and data collections) about biology and biotechnology is captured in natural-language documents such as technical reports, conference proceedings and research articles. The automatic exploitation of this rich knowledge base for decision making, hypothesis management (generation and testing) and knowledge discovery constitutes a formidable challenge. Recently, a set of technologies collectively referred to as knowledge discovery in text (KDT) has been advocated as a promising approach to tackle this challenge. KDT comprises three main tasks: information retrieval, information extraction and text mining. These tasks are the focus of much recent scientific research and many algorithms have been developed and applied to documents and text in biology and biotechnology. This article introduces the basic concepts of KDT, provides an overview of some of these efforts in the field of bioscience and biotechnology, and presents a framework of commonly used techniques for evaluating KDT methods, tools and systems.  相似文献   

20.
Integrating the statistical analysis of spatial data in ecology   总被引:6,自引:0,他引:6  
In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a number of widely different techniques and approaches derived from different schools of thought, and from other scientific disciplines. While the adaptation of a diverse array of statistical approaches and methodologies for the analysis of spatial data has yielded considerable insight into various ecological problems, this diversity of approaches has sometimes impeded communication and retarded more rapid progress in this emergent area. Many of these different statistical methods provide similar information about spatial characteristics, but the differences among these methods make it difficult to compare the results of studies that employ contrasting approaches. The papers in this mini-series explore possible areas of agreement and synthesis between a diversity of approaches to spatial analysis in ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号