首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Synechococcus sp. PCC 7002 genome encodes three genes, denoted cpcS-I, cpcU, cpcV, with sequence similarity to cpeS. CpcS-I copurified with His(6)-tagged (HT) CpcU as a heterodimer, CpcSU. When CpcSU was assayed for bilin lyase activity in vitro with phycocyanobilin (PCB) and apophycocyanin, the reaction product had an absorbance maximum of 622 nm and was highly fluorescent (lambda(max) = 643 nm). In control reactions with PCB and apophycocyanin, the products had absorption maxima at 635 nm and very low fluorescence yields, indicating they contained the more oxidized mesobiliverdin (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). Tryptic peptide mapping showed that the CpcSU-dependent reaction product had one major PCB-containing peptide that contained the PCB binding site Cys-82. The CpcSU lyase was also tested with recombinant apoHT-allophycocyanin (aporHT-AP) and PCB in vitro. AporHT-AP formed an ApcA/ApcB heterodimer with an apparent mass of approximately 27 kDa. When aporHT-AP was incubated with PCB and CpcSU, the product had an absorbance maximum of 614 nm and a fluorescence emission maximum at 636 nm, the expected maxima for monomeric holo-AP. When no enzyme or CpcS-I or CpcU was added alone, the products had absorbance maxima between 645 and 647 nm and were not fluorescent. When these reaction products were analyzed by gel electrophoresis and zinc-enhanced fluorescence emission, only the reaction products from CpcSU had PCB attached to both AP subunits. Therefore, CpcSU is the bilin lyase-responsible for attachment of PCB to Cys-82 of CpcB and Cys-81 of ApcA and ApcB.  相似文献   

2.
Li  Yaqiong  Chen  Min 《Photosynthesis research》2022,151(3):213-223

Phycobilisomes are light-harvesting antenna complexes of cyanobacteria and red algae that are comprised of chromoproteins called phycobiliproteins. PBS core structures are made up of allophycocyanin subunits. Halomicronema hongdechloris (H. hongdechloris) is one of the cyanobacteria that produce chlorophyll f (Chl f) under far-red light and is regulated by the Far-Red Light Photoacclimation gene cluster. There are five genes encoding APC in this specific gene cluster, and they are responsible for assembling the red-shifted PBS in H. hongdechloris grown under far-red light. In this study, the five apc genes located in the FaRLiP gene cluster were heterologously expressed in an Escherichia coli reconstitution system. The canonical APC-encoding genes were also constructed in the same system for comparison. Additionally, five annotated phycobiliprotein lyase-encoding genes (cpcS) from the H. hongdechloris genome were phylogenetically classified and experimentally tested for their catalytic properties including their contribution to the shifted absorption of PBS. Through analysis of recombinant proteins, we determined that the heterodimer of CpcS-I and CpcU are able to ligate a chromophore to the APC-α/APC-β subunits. We discuss some hypotheses towards understanding the roles of the specialised APC and contributions of PBP lyases.

  相似文献   

3.
A novel post-translationally modified residue, gamma-N-methylasparagine, was detected in the beta subunit of Anabaena variabilis allophycocyanin. Structure determination was accomplished by isolating a decapeptide, AP-beta (63-72) shown to have the following structure: Ser-Asp-Ile-Thr-Arg-Pro-Gly-Gly- Asn[N-CH3]-homoserine lactone Fast atom bombardment-mass spectrometry established that the residue corresponding to position 71 in the protein (DeLange, R. J., Williams, L. C., and Glazer, A. N. (1981) J. Biol. Chem. 256, 9558-9566) contained 13 mass units more than expected for aspartic acid though aspartic acid was recovered after acid hydrolysis. The 1H NMR spectrum of AP-beta (63-72) revealed a strong methyl single at 2.71 ppm characteristic of the methyl derivative of an amide nitrogen. Confirmation of this bond arrangement was obtained by detection of a stoichiometric amount of methylamine in acid hydrolysates of the peptide. This is the first report of gamma-N-methylasparagine in a protein. Amino acid analysis of A. variabilis allophycocyanin subunits showed that the derivative at position 71 can account for the total methylamine released from the beta subunit, while hydrolysis of the alpha subunit released no methylamine. The beta subunits of the allophycocyanins from the cyanobacterium Synechococcus PCC 6301 and the red alga Porphyridium cruentum each released 1 eq of methylamine upon acid hydrolysis. No methylamine was released from the alpha subunits.  相似文献   

4.
《BBA》2021,1862(12):148493
Cryptophytes are among the few eukaryotes employing phycobiliproteins (PBP) for light harvesting during oxygenic photosynthesis. In contrast to cyanobacterial PBP that are organized in membrane-associated phycobilisomes, those from cryptophytes are soluble within the chloroplast thylakoid lumen. Their light-harvesting capacity is due to covalent linkage of several open-chain tetrapyrrole chromophores (phycobilins). Guillardia theta utilizes the PBP phycoerythrin 545 with 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB) as chromophores. The assembly of PBPs in cryptophytes involves the action of PBP-lyases as shown for cyanobacterial PBP. PBP-lyases facilitate the attachment of the chromophore in the right configuration and stereochemistry. Here we present the functional characterization of the eukaryotic S-type PBP lyase GtCPES. We show GtCPES-mediated transfer and covalent attachment of PEB to the conserved Cys82 of the acceptor PBP β-subunit (PmCpeB) of Prochlorococcus marinus MED4. On the basis of the previously solved crystal structure, the GtCPES binding pocket was investigated using site-directed mutagenesis. Thereby, amino acid residues involved in phycobilin binding and transfer were identified. Interestingly, exchange of a single amino acid residue Met67 to Ala extended the substrate specificity to phycocyanobilin (PCB), most likely by enlarging the substrate-binding pocket. Variant GtCPES_M67A binds both PEB and PCB forming a stable, colored complex in vitro and produced in Escherichia coli. GtCPES_M67A is able to mediate PCB transfer to Cys82 of PmCpeB. Based on these findings, we postulate that this single amino acid residue has a crucial role for bilin binding specificity of S-type phycoerythrin lyases but additional factors regulate handover to the target protein.  相似文献   

5.
Derks AK  Vasiliev S  Bruce D 《Biochemistry》2008,47(45):11877-11884
Phycobilisomes are the major light-harvesting complexes for cyanobacteria, and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. Phycocyanobilin chromophores are covalently bonded to the phycocyanin beta subunit (CpcB) by specific lyases which have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, we found that mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin when grown under low-light conditions. Absorbance measurements at 10 K revealed the energy states of the beta phycocyanin chromophores to be slightly shifted, and 77 K steady state fluorescence emission spectroscopy showed that excitation energy transfer involving the targeted chromophores was disrupted. This evidence indicates that the position of the phycocyanobilin chromophore within the binding domain of the phycocyanin beta subunit had been modified. We hypothesize that alternate, less specific lyases are able to add chromophores, with varying effectiveness, to the beta binding sites.  相似文献   

6.
We previously constructed seven mutations in the gene for glycoprotein D (gD) of herpes simplex virus type 1 in which the codon for one of the cysteine residues was replaced by a serine codon. Each of the mutant genes was cloned into a eucaryotic expression vector, and the proteins were transiently expressed in mammalian cells. We found that alteration of any of the first six cysteine residues had profound effects on protein conformation and oligosaccharide processing. In this report, we show that five of the mutant proteins exhibit temperature-sensitive differences in such properties as aggregation, antigenic conformation, oligosaccharide processing, and transport to the cell surface. Using a complementation assay, we have now assessed the ability of the mutant proteins to function in virus infection. This assay tests the ability of the mutant proteins expressed from transfected plasmids to rescue production of infectious virions of a gD-minus virus, F-gD beta, in Vero cells. Two mutant proteins, Cys-2 (Cys-106 to Ser) and Cys-4 (Cys-127 to Ser), were able to complement F-gD beta at 31.5 degrees C but not at 37 degrees C. The rescued viruses, designated F-gD beta(Cys-2) and F-gD beta(Cys-4), were neutralized as efficiently as wild-type virus by anti-gD monoclonal antibodies, indicating that gD was present in the virion envelope in a functional form. Both F-gD beta(Cys-2) and F-gD beta(Cys-4) functioned normally in a penetration assay. However, the infectivity of these viruses was markedly reduced compared with that of the wild type when they were preincubated at temperatures above 37 degrees C. The results suggest that mutations involving Cys-106 or Cys-127 in gD-1 confer a temperature-sensitive phenotype on herpes simplex virus. These and other properties of the cysteine-to-serine mutants allowed us to predict a disulfide bonding pattern for gD.  相似文献   

7.
The cyanobacterial phycobilisome (PBS) is a giant pigment-protein complex which harvests light energy for photosynthesis and comprises two structures: a core and peripheral rods. Most studies on PBS structure and function are based on mutants of unicellular strains. In this report, we describe the phenotypic and genetic characterization of a transposon mutant of the filamentous Anabaena sp. strain PCC 7120, denoted LC1, which cannot synthesize the phycobiliprotein phycocyanin (PC), the main component of the rods; in this mutant, the transposon had inserted into the cpcB gene (orf alr0528) which putatively encodes PC-β chain. Mutant LC1 was able to synthesize phycoerythrocyanin (PEC), a phycobiliprotein (PBP) located at the terminal region of the rods; but in the absence of PC, PEC did not attach to the PBSs that only retained the allophycocyanin (APC) core; ferredoxin: NADP+-oxidoreductase (FNR) that is associated with the PBS in the wild type, was not found in isolated PBSs from LC1. The performance of the mutant exposed to different environmental conditions was evaluated. The mutant phenotype was successfully complemented by cloning and transfer of the wild type complete cpc operon to mutant LC1. Interestingly, LC1 compensated its mutation by significantly increasing the number of its core-PBS and the effective quantum yield of photosystem II (PSII) photochemistry; this feature suggests a more efficient energy conversion in the mutant which may be useful for biotechnological applications.  相似文献   

8.
Two point mutants of Chlamydomonas reinhardtii, previously found by recombination and complementation analysis to map in the chloroplast atpB gene encoding the beta subunit of the CF1/CF0 ATP synthase, are here shown to be missense alterations near the 5' end of that gene. One mutant (ac-u-c-2-9) has a change at amino acid position 47 of the beta subunit from leucine (CTA) to arginine (CGA). In the second mutant (ac-u-c-2-29), the codon AAA (lysine) is changed to AAC (asparagine) at position 154. Spontaneous revertants of each mutant were isolated that restore the original wild type base pair. Northern analysis of total RNA and in vivo pulse labeling followed by immunoprecipitation reveals that both mutant atpB genes are transcribed and translated normally. However, immunoblots show that the amount of beta subunit associated with mutant thylakoids is only approximately 3% of that seen in wild type and that the CF1 alpha and gamma subunits are missing entirely. The disruption of ATP synthase complex assembly in these mutants is much more severe than in Escherichia coli beta subunit gene point mutants, which retain significant amounts of alpha and beta subunits on their membranes (Noumi, T., Oka, N., Kanazawa, H., and Futai, M. (1986) J. Biol. Chem. 261, 7070-7075). These results support the hypothesis that there are differences in assembly of the ATP synthase between E. coli and chloroplasts. In particular they indicate that beta must be present for assembly of the alpha and gamma subunits of CF1 onto chloroplast membranes.  相似文献   

9.
It was suggested previously that the primary structure of penicillin-binding protein 4 (PBP4) is new and unique among proteins that interact with penicillin. Our proposal that PBP4 carries an additional domain, located between the active-site fingerprints SXXK and SXN, was investigated by mutational deletion analysis. A clustered set of internal deletions was created in this region by exonuclease treatment of the dacB coding DNA, starting from two internal restriction sites. PBP4 mutants carrying internal deletions were selected by screening for immunoreactive forms of PBP4 with reduced molecular weight that were still active with respect to penicillin binding. DNA sequencing revealed 24 distinct PBP4 mutants with internal deletions ranging from 37 to 113 amino acids. The amino- and carboxy-terminal end points of the deletions were not randomly distributed but tended to cluster in certain areas. Overproduction of the individual mutated forms of PBP4 resulted in accumulation of the major portion of the proteins in the particulate cell fraction. The yield of soluble and active mutated forms of the protein was reduced from below 1% to 79% of the level obtained for the native protein. The deletions that were introduced had minor effects on the deacylation rate of bound benzylpenicillin. Two pairs of cysteine residues (Cys-139-Cys-153 and Cys-197-Cys-214) that are located in the deletable region may form disulfide bridges.  相似文献   

10.
The phycobilin:cysteine 84-phycobiliprotein lyase, CpcS1, catalyzes phycocyanobilin (PCB) and phycoerythrobilin (PEB) attachment at nearly all cysteine 82 binding sites (consensus numbering) of phycoerythrin, phycoerythrocyanin, phycocyanin, and allophycocyanin (Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Plöscher, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14300–14305). We now show that CpcS1 binds PCB and PEB rapidly with bi-exponential kinetics (38/119 and 12/8300 ms, respectively). Chromophore binding to the lyase is reversible and much faster than the spontaneous, but low fidelity chromophore addition to the apo-protein in the absence of the lyase. This indicates kinetic control by the enzyme, which then transfers the chromophore to the apo-protein in a slow (tens of minutes) but stereo- and regioselectively corrects the reaction. This mode of action is reminiscent of chaperones but does not require ATP. The amino acid residues Arg-18 and Arg-149 of the lyase are essential for chromophore attachment in vitro and in Escherichia coli, mutations of His-21, His-22, Trp-75, Trp-140, and Arg-147 result in reduced activity (<30% of wild type in vitro). Mutants R147Q and W69M were active but had reduced capacity for PCB binding; additionally, with W69M there was loss of fidelity in chromophore attachment. Imidazole is a non-competitive inhibitor, supporting a bilin-binding function of histidine. Evidence was obtained that CpcS1 also catalyzes exchange of C-β84-bound PCB in biliproteins by PEB.  相似文献   

11.
12.
Mutants of the cyanobacterium Synechococcus sp. PCC 7002 constructed by the insertional inactivation of either the cpcE or cpcF gene produce low levels of spectroscopically detectable phycocyanin. The majority of the phycocyanin produced in these strains appears to lack the alpha subunit phycocyanobilin (PCB) chromophore (Zhou, J., Gasparich, G. E., Stirewalt, V. L., de Lorimier, R., and Bryant, D. A. (1992) J. Biol. Chem. 267, 16138-16145). Purification of the phycocyanin produced in the mutants revealed two fractions each with an aberrant absorption spectrum. Tryptic peptide maps of the major fraction showed that the alpha-84 PCB peptide was absent. The two PCB peptides derived from the beta subunit were normal. Tryptic digests of the less abundant phycocyanin fraction contained a family of bilin peptides derived from the alpha subunit. Several distinct bilin adducts were present. A major component was a mesobiliverdin adduct, a previously described product of the in vitro reaction of PCB and apophycocyanin. The same results were obtained with both the cpcE mutant and the cpcF mutant. In vitro reactions with PCB and the fractions containing apo alpha subunit showed that the alpha-84 bilin attachment site was unmodified and competent for adduct formation. Pseudo-revertants of both strains were observed to arise at high frequency. Analysis of the phycocyanin from a cpcE pseudo-revertant, which produced a near wild-type level of phycocyanin with alpha subunit carrying PCB, revealed a single amino acid substitution, alpha-Tyr129----Cys. This residue, which is conserved in all phycocyanins sequenced to date, forms part of the alpha-84 bilin binding site and lies within 5 A of alpha-Cys84. A mutated cpcA gene containing this substitution was constructed by site-directed mutagenesis and transformed, along with cpcB, into a cpcBAC deletion strain containing an insertionally inactivated cpcE. This strain produces high levels of phycocyanin and the majority of the alpha subunit carries PCB at alpha-Cys84.  相似文献   

13.
The beta subunit of the rat liver mitochondrial ATP synthase contains a glycine-rich amino acid sequence implicated in binding nucleotides by its similarity to a sequence found in many other nucleotide-binding proteins. A C-terminal three-quarter-length rat liver beta subunit fragment (Glu122 through Ser479), containing this homology region, interacts with adenine nucleotides (Garboczi, D.N., Hullihen, J.H., and Pedersen, P.L. (1988) J. Biol. Chem. 263, 15694-15698). Here we directly test the involvement of the glycine-rich region in nucleotide binding by altering its amino acid sequence through mutation or deletion. Twenty-one mutations within the glycine-rich region of the beta subunit cDNA were randomly generated. Wild-type and mutant beta subunit proteins were purified from overexpressing Escherichia coli strains. The mutant proteins were screened for changes in their interaction with 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), a fluorescent nucleotide analog. Only one mutant protein bearing two amino acid changes (Gly153----Val, Gly156----Arg) exhibited a fluorescence enhancement higher than that of the wild-type "control." Further analysis of this protein revealed a lower affinity for TNP-ATP (Kd = 10 microM) compared with wild type (Kd = 5 microM). In addition, a mutant from which amino acids Gly149-Lys214 had been deleted was prepared. This mutant protein, which lacks the entire glycine-rich region, also displayed a marked reduction in affinity for TNP-ATP (Kd greater than 60 microM). Prior addition of 0.5 mM ATP significantly reduced the binding of TNP-ATP to both the double and deletion mutants. The altered interaction of nucleotide with both glycine-rich region mutants points to the involvement of this region in the binding site. Further, this work shows that a beta subunit protein that lacks the glycine-rich homology region can still interact with nucleotide, indicating that one or more additional regions of this subunit contribute to the nucleotide binding site.  相似文献   

14.
The core of the phycobilisomes of Synechococcus 6301 (Anacystis nidulans) strain AN112 consists of two cylindrical elements each made up of the same four distinct subcomplexes: A (alpha AP beta AP)3; B (alpha AP beta AP)2 . 18.3K . 75K; C (alpha 1APB alpha 2AP beta 3AP) . 10.5K; and D (alpha AP beta AP)3 . 10.5K, where alpha AP and beta AP are the subunits of allophycocyanin, alpha APB is the subunit of allophycocyanin B, and 18.3K, 75K, and 10.5K are polypeptides of 18,300, 75,000, and 10,500 Da, respectively. An 18 S subassembly containing subcomplexes A and B has previously been characterized (Yamanaka, G., Lundell, D. J., and Glazer, A. N. (1982) J. Biol. Chem. 257, 4077-4086; Lundell, D. J., and Glazer, A. N. (1983) J. Biol. Chem. 258, 894-901, 902-908). A ternary core subassembly, containing complexes A, B, and C, was isolated from a limited tryptic digest of AN112 phycobilisomes and characterized with respect to composition and spectroscopic properties. Isolation of this ternary subassembly also establishes that subcomplex D must occupy a terminal position in each of the two core cylinders. Spectroscopic studies of the individual complexes, A-D, of the subassemblies AB and ABC, and of intact AN112 phycobilisomes showed core assembly-dependent changes in the circular dichroism spectra indicative of changes in the environment and/or conformation of the bilin chromophores within the individual subcomplexes. Two terminal energy acceptors are present in the phycobilisome core, alpha APB and 75K. No indication of interaction between the chromophores on these polypeptides was detected by circular dichroism spectroscopy. This result indicates that the bilins on alpha APB and 75K act as independent energy acceptors rather than as exciton pairs.  相似文献   

15.
The phycobiliproteins contain a conserved unique modified residue, gamma-N-methylasparagine at beta-72. This study examines the consequences of this methylation for the structure and function of phycocyanin and of phycobilisomes. An assay for the protein asparagine methylase activity was developed using [methyl-3H]S-adenosylmethionine and apophycocyanin purified from Escherichia coli containing the genes for the alpha and beta subunits of phycocyanin from Synechococcus sp. PCC 7002 as substrates. This assay permitted the partial purification, from Synechococcus sp. PCC 6301, of the activity that methylates phycocyanin and allophycocyanin completely at residue beta-72. Using the methylase assay, two independent nitrosoguanidine-induced mutants of Synechococcus sp. PCC 7942 were isolated that do not exhibit detectable phycobiliprotein methylase activity. These mutants, designated pcm 1 and pcm 2, produce phycocyanin and allophycocyanin unmethylated at beta-72. The phycobiliproteins in these mutants are assembled into phycobilisomes and can be methylated in vitro by the partially purified methylase from Synechococcus sp. PCC 6301. The mutants produce phycobiliproteins in amounts comparable to those of wild-type and the mutant and wild-type phycocyanins are equivalent with respect to thermal stability profiles. Monomeric phycocyanins purified from these strains show small spectral shifts that correlate with the level of methylation. Phycobilisomes from the mutant strains exhibit defects in energy transfer, both in vivo and in vitro, that are also correlated with deficiencies in methylation. Unmethylated or undermethylated phycobilisomes show greater emission from phycocyanin and allophycocyanin and lower fluorescence emission quantum yields than do fully methylated particles. The results support the conclusion that the site-specific methylation of phycobiliproteins contributes significantly to the efficiency of directional energy transfer in the phycobilisome.  相似文献   

16.
17.
The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC.  相似文献   

18.
The following phycobiliproteins and complexes of the allophycocyanin core were isolated from phycobilisomes of the thermophilic cyanobacterium Mastigocladus laminosus: alpha AP, beta AP, (alpha AP beta AP), (alpha AP beta AP)3, (alpha AP beta AP)3L8.9C, (alpha APB alpha AP2 beta AP3)L8.9C. The six proteins and complexes were characterised spectroscopically with respect to absorption, oscillator strength, extinction coefficient, fluorescence emission, relative quantum yield, fluorescence emission polarisation and fluorescence excitation polarisation. The interpretation of the spectral data was based on the three-dimensional structure model of (alpha PC beta PC)3 (Schirmer et al. (1985) J. Mol. Biol. 184, 257-277), which is related to the allophycocyanin trimer. The absorption and CD spectra of the complexes (alpha AP beta AP)3, (alpha AP beta AP)3L8.9C and (alpha APB alpha AP2 beta AP3)L8.9C could be deconvoluted into the spectra of the phycobiliprotein subunits. The assumptions made for the deconvolution could be checked by the synthesis of the spectra of (alpha APB beta AP)3. The synthesised spectra are in good agreement with the corresponding measured spectra published by other authors. Considering the deconvoluted spectra the following influences on the chromophores could be ascribed to L8.9C: L8.9C neither influences the alpha AP nor the alpha APB chromophores. L8.9C shifts the absorption maximum of the beta AP chromophore to longer wavelength than the absorption maximum of the alpha AP chromophore in trimeric complexes. L8.9C increases the oszillator strength of the beta AP chromophores to about the value of the alpha AP chromophores in trimeric complexes. L8.9C turns the beta AP chromophores from sensitizing into weak fluorescing chromophores. By means of the hydropathy plot and the predicted secondary structure, a postulated three-fold symmetry in the tertiary structure of L8.9C could be confirmed.  相似文献   

19.
Phycobilisomes of the cyanobacterium Synechococcus 6301 contain C-phycocyanin and allophycocyanin in a molar ratio of approximately 3.8:1, a minor biliprotein, allophycocyanin B, and nonpigmented polypeptides of 75, 33, 30, and 27 kilodaltons. A nitrosoguanidine-induced mutant AN112 produces altered phycobilisomes with the molar ratio of C-phycocyanin to allophycocyanin reduced to approximately 1.4:1 and without any of the 33- and 30-kilodalton polypeptides. The mutant and wild type phycobilisomes contain the same molar amount of the 75- and 27-kilodalton polypeptides relative to allophycocyanin. As seen by electron microscopy, the allophycocyanin-containing core of the mutant and of the wild type phycobilisomes appears the same. In some views of the core, each of the two core units in the mutant particles can be seen to consist of four discs approximately 3 nm thick. In wild type phycobilisomes five or six rods, made up of two to six stacked discs (11.5 X 6 nm) are attached to the core. In the mutant, no such rods are seen; rather, single disc-shaped elements, ranging from two to six in number, are found attached. Spectroscopic measurements show that the assembly form of phycocyanin in the mutant phycobilisomes differs from that in the wild type particles but reveal no difference in the organization of the core elements. These results indicate that the portions of the rod substructures of wild type phycobilisomes, beyond the disc proximal to the core, are made up of phycocyanin and the 33- and 30-kilodalton polypeptides. Emission from phycocyanin is a significant component in the fluorescence from isolated Synechococcus 6301 phycobilisomes and indicates an upper limit of 94% for the efficiency of energy transfer from phycocyanin to allophycocyanin and allophycocyanin B in these particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号