首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we have reported a decrease in the binding of a cAMP analog to the regulatory subunits of cAMP-dependent protein kinase (cAMP-PK), as well as a decrease in cAMP-PK activities, in psoriatic cells. Retinoic acid (RA) treatment of these cells can induce an increase in cAMP-PK toward normal levels. To better define the effect of retinoic acid on the cAMP-PK system in psoriatic fibroblasts, Western blot analysis using an RIIα specific antibody and in vivo phosphorylation experiments were carried out to determine possible changes in the RII regulatory subunit. Our results indicate a decrease in the binding of the cAMP analog 8-azido-[32P]-cAMP with no change in the level of RII protein in psoriatic fibroblasts. In addition, by two-dimensional gel electrophoresis we observed the presence of a phosphorylated form of RII unique to psoriatic cells which is suppressed by RA treatment. This study suggests an altered posttranslational modification of the cAMP-PKII in psoriatic fibrobiasts which can be reversed by exposure of these cells to RA.  相似文献   

2.
Vitamin A inhibits growth and increases the activity of cAMP-dependent protein kinase in B16 mouse melanoma cells. In this report we show that retinoic acid (RA) treatment of intact cells alters their subsequent in vitro protein phosphorylation, but we could not demonstrate any changes in in vivo protein phosphorylation. A 48-h treatment with RA results in a concentration-dependent decrease of protein phosphorylation of a 95K molecular weight (MW) protein in both supernatant and particulate fractions. The phosphorylation of this protein does not appear to be regulated by cAMP. Proteins at 92K and 82K MW in the supernatant fraction are increased in phosphorylation. The former (but not the latter) is regulated by cAMP. In the particulate fraction a variety of proteins 12K-68K MW are increased in phosphorylation, as the cells are treated with increasing amounts of RA. The phosphorylation of most of these proteins is regulated by cAMP. Another inhibitor of B16 cell growth, melanocyte-stimulating hormone (MSH) also alters protein phosphorylation. At short incubation periods (1 h), this hormone stimulates phosphorylation of a number of proteins (17-40K MW), while in longer incubation periods (48 h) phosphorylation is inhibited. All of these phosphorylations appear to be regulated by cAMP. We attempted to repeat these observations using intact-cell phosphorylation with 32PO4. In two experiments we saw small changes in the phosphorylation of proteins. In most experiments, however, we could find no change in the phosphoproteins. Further experiments have led us to question the in vivo phosphorylation, since treatment of the cells with MSH, cholera toxin, or db-cAMP also did not affect intact-cell protein phosphorylation. We have previously documented that under these latter conditions cAMP levels are greatly elevated and cAMP-dependent protein kinase is activated. The in vitro phosphorylation results suggests that in RA-treated cells, kinase activities and/or protein substrate levels are changing. However, the physiological significance of the particular MW phosphoproteins changes we have described must await resolution of the in vivo phosphorylation data.  相似文献   

3.
The rat pituitary cell line GH3 contains a high molecular weight microtubule-associated protein with properties characteristic of microtubule-associated protein-2 (MAP-2). The 280-kDa protein is selectively immunoprecipitated by antibodies to authentic bovine brain MAP-2 and is phosphorylated at appropriate sites by cAMP-dependent protein kinase (cAMP kinase) and multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Although MAP-2 is a minor cellular constituent, it can be immunoprecipitated from [32P]Pi-labeled GH3 cells and shown to contain a high level of basal phosphorylation. Vasoactive intestinal peptide, forskolin, 3-isobutyl-1-methylxanthene, or cholera toxin, treatments which increase cellular cAMP levels, or dibutyryl cAMP stimulate phosphorylation of specific sites on MAP-2 without significantly increasing its high state of basal phosphorylation. Phosphopeptide mapping reveals that the sites phosphorylated by cAMP kinase in vitro are the same sites whose phosphorylation in situ increases following stimulation of GH3 with agents that activate cAMP kinase. Increasing intracellular Ca2+ levels in GH3 cells also stimulates phosphorylation of MAP-2 but at sites distinct from those phosphorylated following treatment with cAMP inducing agonists. Phosphopeptide mapping indicates that the sites phosphorylated by CaM kinase in vitro are the same sites whose phosphorylation in situ increases following Ca2(+)-mediated stimulation. We conclude that activation of cAMP- and Ca2(+)-based signaling pathways leads to phosphorylation of MAP-2 in GH3 cells and that cAMP kinase and CaM kinase mediate phosphorylation by these pathways, respectively.  相似文献   

4.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   

5.
Anchorage-independent growth in vitro is strongly correlated with cellular malignancy in vivo and it has been shown that retinoic acid (RA; a vitamin A analog) inhibits anchorage-independent growth of a wide variety of oncogenically transformed cells (RA-sensitive cells). We report here that decreased or lack of phosphorylation of a group of low molecular weight (20-30 kD) cell surface membrane proteins, particularly one of Mr 28 kD, correlates strongly with RA-induced loss of anchorage-independent growth of RA-sensitive cells. Our studies also show that this group of proteins are not phosphorylated in non-transformed cells which do not grow in an anchorage-independent manner. Analysis of [35S]methionine-labeled proteins revealed that these polypeptides are present in both RA-treated and untreated cell surface membranes. This suggests that modulation of phosphorylation rather than lack of synthesis of these proteins is correlated with anchorage regulation of cells. V8 protease mapping of the 28 kD phosphoprotein from transformed cells, irrespective of their origin or of transforming agents, revealed complete fragment homology. Furthermore, the 28 kD phosphoprotein was found to be phosphorylated exclusively at threonine residues. The data obtained from this study suggest that the ability of cells to grow without anchorage is correlated with the phosphorylation of a group of cell surface membrane proteins and RA inhibits anchorage-independent growth by interfering with the phosphorylation rather than synthesis of these proteins.  相似文献   

6.
Previously, we have reported a defect in the cAMP-dependent protein kinases (cAMP-PK) in psoriatic cells (i.e., a decrease in 8-azido-[32P]cAMP binding to the regulatory subunits and a decrease in phosphotransferase activity) which is rapidly reversed with retinoic acid (RA) treatment of these cells. This led us to examine a possible direct interaction between retinoids and the RI and RII regulatory subunits through retinoylation. Retinoylation of RI and RII present in normal and psoriatic human fibroblasts was analysed by [3H]RA treatment of these cells, followed either by chromatographic separation of the regulatory subunits or by their specific immunoprecipitation. These studies indicated that RI and RII can be retinoylated. [3H]RA labeling of the RII subunit was significantly (P < 0.005) greater in psoriatic fibroblasts (nine subjects; mean 7.47 relative units ± 1.37 SEM) compared to normal fibroblasts (eight subjects; mean 2.46 relative units ± 0.49 SEM). [3H]RA labeling of and the increase in 8-azido-[32P]-binding to the RI and RII subunit in psoriatic fibroblasts showed a similar time course. This suggests that the rapid effect of retinoic acid treatment to enhance 8-azido-[32P]-cAMP binding to the RI and RII in psoriatic fibroblasts may be due, in part, to covalent modification of the regulatory subunits by retinoylation. © 1996 Wiley-Liss, Inc.  相似文献   

7.
8.
Administration of T3 (20 micrograms/100 g BW) for 3 days increases phosphorylation of several proteins in rat liver cytosol in vitro. To help elucidate the mechanism of T3-induced phosphorylation, we studied which protein kinase(s) mediate phosphorylation of endogenous cytosolic proteins. Five different protein kinases were obtained by DEAE+ cellulose column chromatographic fractionation of liver cytosol. When their ability to phosphorylate heat-inactivated cytosol was investigated, casein kinase, a cAMP independent protein kinase, showed the strongest effect. Casein kinase, purified by phosphocellulose chromatography, phosphorylated more than 10 cytosolic proteins. Several T3-dependent (and cAMP independent) phosphoproteins were included among these. One protein with Mr 39 X 10(3), of which phosphorylation is stimulated by T3 within five hours after injection, was the most active substrate for casein kinase. The results suggest that casein kinase is the enzyme responsible for phosphorylation of many rat liver cytosolic proteins and that several phosphoproteins, apparently under T3-regulation, might be phosphorylated by this enzyme.  相似文献   

9.
When cell-free extracts of chickens embryo fibroblasts transformed by Rous sarcoma virus (RSV) were incubated with [gamma-32P]ATP, a protein having a Mr of 36,000 was phosphorylated. Two-dimensional electrophoresis of a mixture of phosphorylated proteins formed in vitro and in vivo showed that they are indistinguishable. The in vitro phosphorylation of the Mr = 36,000 protein was completely inhibited by serum isolated from rabbit bearing tumor formed by RSV. In addition, phosphorylation of the 36K protein does not occur if the extract was made from fibroblasts transformed by RSV tsNY68 and cultured at 42 degrees C or from fibroblasts infected with transformation defective RSV. The cell free-phosphorylation of 36K protein was dependent on Mg2+ ions but not dependent on exogenously added cyclic AMP.  相似文献   

10.
Changes in the extent of phosphorylation of the 25 kDa subunit of eIF-4F occur during several major biological events including mitosis and heat shock in mammalian cells and shortly after fertilization of sea urchin (Lytechinus pictus) eggs. In vitro phosphorylation studies using highly purified protein kinases demonstrated that the 220 kDa subunit of eIF-4F was phosphorylated by cAMP dependent protein kinase, protein kinase C and probably to a lesser extent by cGMP dependent protein kinase. In addition, eIF-4A was readily phosphorylated by cAMP and cGMP dependent protein kinases whereas p48 of eIF-4F was not. The effect of these phosphorylation events on eIF-4F function, its assembly or disassembly, susceptibility to viral initiated proteolysis or the ability of p25 to be phosphorylated at serine-53 remain to be investigated.  相似文献   

11.
Treatment of PtK1 cells with 5 mM acrylamide for 4 hr induces reversible dephosphorylation of keratin in concert with reversible aggregation of intermediate filaments (Eckert and Yeagle, Cell Motil. Cytoskeleton 11:24-30, 1988). We have examined this phenomenon by 1) in vitro phosphorylation of isolated PtK1 keratin filaments and 2) combined treatments of PtK1 cells with both acrylamide and agents which elevate intracellular cAMP levels. PtK1 keratins were incubated in gamma-32P-ATP in the presence or absence of cAMP-dependent kinase (A-kinase) and cAMP. Levels of phosphorylation were analyzed by electrophoresis and autoradiography. Phosphorylation of keratin polypeptides (56 kD, 53 kD, 45 kD, 40 kD) occurred without added kinase, suggesting the presence of an endogenous kinase which remains with intermediate filaments in residues of Triton X-100 extracted cells. Phosphorylation levels were increased by A-kinase but not by cAMP alone, indicating the presence of cAMP-dependent phosphorylation sites in addition to sites phosphorylated by the endogenous kinase. To study the possible role of cAMP-dependent phosphorylation in acrylamide-induced aggregation of keratin filaments, we treated cells with acrylamide in the presence of 8-bromo-cAMP (brcAMP), pertussis toxin (PT), isobutylmethylxanthine (IBMX), or forskolin, which increase intracellular cAMP levels. The distribution and phosphorylation levels of keratin filaments, as well as intracellular cAMP levels, were determined for each of these treatments. In addition to aggregation and dephosphorylation of keratin filaments reported previously, treatment of cells with acrylamide alone also results in reduced levels of intracellular cAMP. 8-bromo-cAMP, IBMX, and forskolin prevent acrylamide-induced aggregation of keratin filaments and result in both normal levels of keratin phosphorylation and normal intracellular cAMP levels. PT was apparently ineffective. These observations suggest that 1) PtK1 keratins are phosphorylated by cAMP-dependent kinase and an endogenous, cAMP-independent kinase and 2) alteration of levels of cAMP-dependent phosphorylation may be involved in aggregation of keratin filaments in response to acrylamide.  相似文献   

12.
The appreciation of protein phosphorylation as a ubiquitous mechanism for the post-translational control of protein function has drawn our attention to the phosphorylation of plasma membrane proteins. We have studied this phenomenon in the human erythrocyte and rat adipocyte, and have observed several features, common to the two systems, which may be of general significance. In examining protein phosphorylation in intact cells incubated with 32Pi, it is evident that the 32P-polypeptides of the plasma membrane are among the most highly labelled species in the cell, despite their minor contribution to overall protein content. The addition of epinephrine (to adipocytes) or cAMP (to erythrocytes) increases the phosphorylation of certain peptides, whereas others are unaffected. The protein kinases mediating these phosphorylations are present in the plasma membrane as isolated, and can be divided into two groups--cAMP dependent and cAMP independent. These two classes of kinase differ markedly in their substrate specificity toward endogenous and exogenous polypeptide substrates. Two classes of protein kinases with similar properties can be detected in the cytoplasm. The relationship between the membrane-bound and cytoplasmic enzymes is uncertain. The potential roles of the plasma membrane cAMP dependent protein kinases are evident from the diverse effects of cAMP on surface properties; however, the prevalence of plasma membrane proteins phosphorylated via cAMP independent pathways is striking. Thus, elucidation of the regulatory properties of the plasma membrane cAMP independent protein kinases may give new insight into the control of a variety of surface phenomena not mediated by cAMP.  相似文献   

13.
It has been suggested that the signal transduction pathway initiated by apoA-I activates key proteins involved in cellular lipid efflux. We investigated apoA-I-mediated cAMP signaling in cultured human fibroblasts induced with (22R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Treatment of stimulated fibroblasts with apoA-I for short periods of time (相似文献   

14.
Addition of [gamma -32P]ATP to a 2% Brij-78 40,000g supernatant of sea urchin sperm results in the cAMP-dependent phosphorylation of eight to ten proteins. One phosphoprotein of Mr 190 kD is sperm adenylate cyclase (AC). An antiserum to the AC immunoprecipitates the Mr 190 kD protein. Peptide maps of immunoprecipitates show that the AC is the only phosphoprotein present in the Mr 200 kD range. With respect to the in vitro phosphorylation of AC, the endogenous kinase has a Km for ATP of 5.2 microM and is maximally stimulated by 4-8 microM cAMP. The protein kinase inhibitors H8 (9 microM) and PKI (30 U/ml) inhibit the phosphorylation of the AC. The catalytic subunit of bovine cAMP-dependent protein kinase phosphorylates the AC on the same peptides as the endogenous protein kinase. Cyanogen bromide generated peptide maps of the phosphorylated AC show a minimum of five sites of phosphorylation. No change in the Km or Vmax of the sperm AC resulted from the additional phosphorylation by bovine kinase. Calcium ions at submicromolar concentrations completely block the in vitro phosphorylation of the AC, suggesting the presence in the preparation of a Ca2(+) -activated protein phosphatase. To our knowledge, this is the first report of the phosphorylation of an AC by cAMP-dependent protein kinase.  相似文献   

15.
The effect of various differentiation-inducers on the activity of Ca2+, phospholipid-dependent protein kinase (C-kinase) activity and endogenous protein phosphorylation by the kinase were examined in the extracts of HL-60 cells. Although all of the inducers, retinoic acid, dibutyryl cAMP, nicotinamide, dimethylsulfoxide, and 3-aminobenzamide increased the cytosolic C-kinase activity accompanied with the differentiation into mature myelocytes, only retinoic acid markedly enhanced Ca2+, phospholipid-dependent phosphorylation of 44 and 32 kDa proteins in the cytosol. These results suggest that the differentiation pathway induced by retinoic acid is different from the pathways induced by other inducers.  相似文献   

16.
Vasodilators such as sodium nitroprusside, nitroglycerin and various prostaglandins are capable of inhibiting platelet aggregation associated with an increase of either cGMP or cAMP. In our studies with intact platelets, prostaglandin E1 and sodium nitroprusside stimulated the phosphorylation of several proteins which could be distinguished from proteins known to be phosphorylated by a calmodulin-regulated protein kinase or by protein kinase C. Prostaglandin E1 (10 microM) or dibutyryl cAMP (2 mM) stimulated the phosphorylation of proteins with apparent relative molecular masses, Mr, of 240,000, 68,000, 50,000, and 22,000 in intact platelets. These proteins were also phosphorylated in response to low concentrations (1-2 microM) of cAMP in a particulate fraction of platelets. In intact platelets, sodium nitroprusside (100 microM) and the 8-bromo derivative of cGMP (2 mM) increased the phosphorylation of one protein of Mr 50,000 which was also phosphorylated in response to low concentrations (1-2 microM) of cGMP in platelet membranes. An additional protein (Mr 24,000) appeared to be phosphorylated to a lesser degree in intact platelets by prostaglandin E1 and sodium nitroprusside. Since the phosphorylation of the protein of Mr 50,000 was stimulated both in intact platelets by cyclic-nucleotide-elevating agents and cyclic nucleotide analogs, as well as in platelet membranes by cyclic nucleotides, this phosphoprotein was analyzed by limited proteolysis, tryptic fingerprinting and phosphoamino acid analysis. These experiments indicated that the 50-kDa proteins phosphorylated by sodium nitroprusside and prostaglandin E1 were identical, and that the peptide of the 50-kDa protein phosphorylated by both agents was also the same as the peptide derived from the 50-kDa protein phosphorylated in platelet membranes by cGMP- and cAMP-dependent protein kinases, respectively. Regulation of protein phosphorylation mediated by cAMP- and cGMP-dependent protein kinases may be the molecular mechanism by which those vasodilators, capable of increasing either cAMP or cGMP, inhibit platelet aggregation.  相似文献   

17.
Numerous studies have indicated that treatment of Leydig cells with gonadotropin results in increased levels of intracellular cAMP, binding of cAMP to and activation of protein kinase A, phosphorylation of proteins, synthesis of new proteins and eventually, stimulation of steroidogenesis. In addition, recent studies have indicated that protein phosphorylation is an indispensable event in the production of steroids in response to hormone stimulation in adrenal cells. Because of the important role of phosphorylation in steroidogenic regulation, we investigated the effects of human chorionic gonadotropin (hCG), dibutyryl cyclic AMP (dbcAMP), forskolin and the phorbol ester, phorbol-12-myristate 13-acetate (PMA) on protein phosphorylation in MA-10 mouse Leydig tumor cells. Cells were stimulated with different steroidogenic compounds in the presence of [32P]orthophosphoric acid for 2 h and phosphoproteins analyzed by two-dimensional polyacrylamide gel-electrophoresis (PAGE). Results demonstrated an increase in the phosphorylation of four proteins (22 kDa, pI 5.9; 24 kDa, pI 6.7 and 30 kDa, pI 6.3 and 6.5) in response to 34 ng/ml hCG, 1 mM dbcAMP and 100 microM forskolin. Conversely, treatment of cells with PMA increased the phosphorylation of only one of these proteins (30 kDa, pI 6.3). At least two of these proteins (30 kDa, pI 6.5 and 6.3) appear to be identical to proteins which we and others have shown to be synthesized in response to trophic hormone stimulation in adrenal, luteal and Leydig cells. In addition, they also appear to be identical to adrenal cell mitochondrial proteins demonstrated to be phosphorylated in response to ACTH. These data indicate that proteins similar to those phosphorylated in adrenal cells in response to ACTH are phosphorylated in hormone stimulated testicular Leydig cells and that these proteins may be involved in steroidogenic regulation.  相似文献   

18.
Human promyelocytic leukemia cell line (HL-60) has been shown to be induced to the terminal differentiation into macrophage-like cells by a tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). The present studies describe the effects of TPA on the phosphorylation of HL-60 cell proteins. A rapid decrease in the phosphorylation of a 75 kD protein was observed within a few minutes after treatment with TPA. On the other hand, TPA treatment of HL-60 cells caused rapid increase in the phosphorylation of a 67 kD protein and other minor proteins. Phorbol and 4α-phorbol-12,13-dodecanoate, both of which are biologically inactive derivatives of TPA, failed to cause any changes in protein phosphorylation in HL-60 cells. These results suggest that changes in protein phosphorylation are involved in mechanisms of the differentiation in HL-60 cells induced by TPA. Cell fractionation experiments revealed that 67K protein was located in cytosol. Though 75K protein also seemed to be located in cytosol, the phosphate moiety of 75K protein was almost lost during cell fractionation, suggesting that the phosphorylation of 75K protein was specifically regulated in HL-60 cells. Dimethyl sulfoxide (DMSO), retinoic acid (RA) and 1,25-dihydroxy-vitamin D3, all of which induce the differentiation in HL-60 cells, did not cause any changes in protein phosphorylation. These results suggest that the changes in protein phosphorylation are specific for TPA. The possible mechanisms of changes in protein phosphorylation by TPA were discussed.  相似文献   

19.
The members of the regulatory factor (RF) gene family, Na(+)/H(+) exchanger (NHE)-RF and NHE3 kinase A regulatory factor (E3KARP) are necessary for cAMP to inhibit the epithelial brush border NHE isoform 3 (NHE3). The mechanism of their action was studied using PS120 fibroblasts stably transfected with rabbit NHE3 and wild type rabbit NHE-RF or wild type human E3KARP. 8-Bromo-cAMP (8-Br-cAMP) had no effect on Na(+)/H(+) exchange activity in cells expressing NHE3 alone. In contrast, in cells co-expressing NHE-RF, 8-Br-cAMP inhibited NHE3 by 39%. In vivo phosphorylation of NHE3 demonstrated that cAMP increased phosphorylation in two chymotrypsin-generated phosphopeptides of NHE3 in cells containing NHE-RF or E3KARP but not in cells lacking these proteins. The requirement for phosphorylation of NHE-RF in this cAMP-induced inhibition of NHE3 was examined by studying a mutant NHE-RF in which serines 287, 289, and 290 were mutated to alanines. Wild type NHE-RF was a phosphorylated protein under basal conditions, but treatment with 8-Br-cAMP did not alter its phosphorylation. Mutant NHE-RF was not phosphorylated either under basal conditions or after 8-Br-cAMP. 8-Br-cAMP inhibited NHE3 similarly in PS120/NHE3 cells containing wild type or mutant NHE-RF. NHE-RF and NHE3 co-precipitated and did so similarly with and without cAMP. Mutant NHE-RF also similarly immunoprecipitated NHE3 in the presence and absence of 8-Br-cAMP. This study shows that members of the regulatory factor gene family, NHE-RF and E3KARP, are necessary for cAMP inhibition of NHE3 by allowing NHE3 to be phosphorylated. This inhibition is not dependent on the phosphorylation of NHE-RF.  相似文献   

20.
Retinoic acid induces the differentiation of PCC4.aza 1R and Nulli-SCC1 embryonal carcinoma (EC) cells. In response to retinoic acid treatment, the levels of cyclic AMP (cAMP)-dependent protein kinases are enhanced in the plasma membrane within 17 hours and in the cytosol fractions of these cells within 2 to 3 days, as determined by phosphotransferase activity and by 8-azido-cyclic [32P]AMP binding to the RI and RII regulatory subunits. PCC4 (RA)-1 and Nulli (RA)-1 are mutant EC lines that fail to differentiate in response to retinoic acid. The former line, but not the latter, lacks cellular retinoic acid-binding protein (cRABP). Basal levels of cAMP-dependent protein kinase activities are elevated in PCC4 (RA)-1 cells. When these cells are treated with retinoic acid, neither cAMP-dependent protein kinase activities nor cAMP binding activities are enhanced; rather, there is a decrease in cytosolic kinase activity and RI subunit. On the other hand, Nulli (RA)-1 cells exhibit increases both in cAMP-dependent protein kinase activities and cAMP binding in response to retinoic acid. These results raise the possibility that cRABP mediates the enhancement of regulatory and catalytic subunits of cAMP-dependent protein kinases in both the membrane and the cytosolic fractions of the teratocarcinoma cells. There also might be some effects of retinoic acid on the cAMP-dependent protein kinase that are unrelated to differentiation and to the presence of cRABP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号