首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface activation of progelatinase A (proMMP—2) and cell migration   总被引:16,自引:1,他引:15  
Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion.The proteinase is cerceted from the cell as an inactive zymogen.In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs).Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1-MMP by forming a ternary complex.Free MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface.MT1-MMP is found in cultured invasive cancer cells at the invadopodia.The MT-MMP/TIMP-2/MMP-2 system thus provides localized expression of proteolysis of the extracellular matrix required for cell migration.  相似文献   

2.
The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation.  相似文献   

3.
Itoh Y  Takamura A  Ito N  Maru Y  Sato H  Suenaga N  Aoki T  Seiki M 《The EMBO journal》2001,20(17):4782-4793
Activation of proMMP-2 by MT1-MMP is considered to be a critical event in cancer cell invasion. In the activation step, TIMP-2 bound to MT1-MMP on the cell surface acts as a receptor for proMMP-2. Subsequently, adjacent TIMP-2-free MT1-MMP activates the proMMP-2 in the ternary complex. In this study, we demonstrate that MT1-MMP forms a homophilic complex through the hemopexin-like (PEX) domain that acts as a mechanism to keep MT1-MMP molecules close together to facilitate proMMP-2 activation. Deletion of the PEX domain in MT1-MMP, or swapping the domain with the one derived from MT4-MMP, abolished the ability to activate proMMP-2 on the cell surface without affecting the proteolytic activities. In addition, expression of the mutant MT1-MMP lacking the catalytic domain (MT1PEX-F) efficiently inhibited complex formation of the full-length enzymes and activation of pro MMP-2. Furthermore, expression of MT1PEX-F inhibited proMMP-2 activation and Matrigel invasion activity of invasive human fibrosarcoma HT1080 cells. These findings elucidate a new function of the PEX domain: regulating MT1-MMP activity on the cell surface, which accelerates cellular invasiveness in the tissue.  相似文献   

4.
Members of the membrane-type matrix metalloproteinase (MT-MMPs) family are dual regulators of extracellular matrix remodeling through direct degradation of extracellular matrix components and activation of other latent MMPs. However, the structural basis of this functional diversity remains poorly understood. In an attempt to dissect the structural determinants for MT-MMP function, we performed domain exchange experiments between MT1-MMP and its close relative MT3-MMP and analyzed the exchange chimeras for pro-MMP-2 activation and collagen degradation at the cellular level. Our results indicate that catalytic domains determine the pattern of pro-MMP-2 activation, whereas pexin-like domains modulate the level of activation. On the other hand, both the catalytic and pexin-like domains of MT1-MMP are required for strong collagenolysis because exchanging either domain with that of MT3-MMP yielded significantly lower activity, and the introduction of the MT1-MMP catalytic or pexin-like domain into MT3-MMP failed to generate any significant enhancement of collagenolytic activity compared with wild-type MT3-MMP. Interestingly, the cytoplasmic domain of MT1-MMP behaves as a negative regulator not only for MT1-MMP itself, but also for MT3-MMP in both pro-MMP-2 activation and collagenolysis, consistent with and extending our recent findings (Jiang, A., Lehti, K., Wang, X., Weiss, S. J., Keski-Oja, J., and Pei, D. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 13693-13698). Taken together, these results demonstrate that domains in MT-MMPs function differently toward a given substrate and thus should be targeted differentially for future therapeutic development.  相似文献   

5.
Both mammary gland development and mammary carcinogenesis involve extensive remodeling of the mammary gland extracellular matrix. The expression of four membrane-type matrix metalloproteinases (MT-MMPs) with matrix remodeling potential in development and tumorigenesis was evaluated by in-situ hybridization on mouse mammary gland sections. MT1-MMP and MT3-MMP were found in the mammary stroma mainly around epithelial structures in both developing and mature mammary gland. In contrast, MT2-MMP was found exclusively in the mammary epithelium. Lactating gland expressed none of the examined MT-MMPs. Mammary gland tumors expressed MT1-MMP, MT2-MMP, and MT3-MMP while MT4-MMP was not expressed in any developmental or cancerous stage analyzed here. Our results suggest that MT1-MMP, MT2-MMP, and MT3-MMP may be involved in remodeling of both the normal and diseased mammary gland either directly or indirectly by activation of other MMPs.  相似文献   

6.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated as a physiological activator of progelatinase A (MMP-2). We previously reported that plasmin treatment of cells results in proMMP-2 activation and increased type IV collagen degradation. Here, we analyzed the role of MT1-MMP in plasmin activation of MMP-2 using HT-1080 cells transfected with MT1-MMP sense or antisense cDNA. Control, vector-transfected cells that expressed endogenous MT1-MMP, and antisense cDNA transfectants with very low levels of MT1-MMP did not activate proMMP-2. Conversely, cells transfected with sense MT1-MMP cDNA expressed high MT1-MMP levels and processed proMMP-2 to 68/66-kDa intermediate activation products. Control cells and MT1-MMP transfectants had much higher levels of cell-associated MMP-2 than antisense cDNA transfectants. Addition of plasmin(ogen) to control or MT1-MMP-transfected cells generated active, 62-kDa MMP-2, but was ineffective with antisense cDNA transfectants. The effect of plasmin(ogen) was prevented by inhibitors of plasmin, but not by metalloproteinase inhibitors, implicating plasmin as a mechanism for proMMP-2 activation independent of the activity of MT1-MMP or other MMPs. Plasmin-mediated activation of proMMP-2 did not result from processing of proMT1-MMP and did not correlate with alpha(v)beta(3) integrin or TIMP-2 levels. Thus, plasmin can activate proMMP-2 only in the presence of MT1-MMP; however, this process does not require the catalytic activity of MT1-MMP.  相似文献   

7.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

8.
The membrane type (MT)-matrix metalloproteinases (MMPs) constitute a subgroup of membrane-anchored MMPs that are major mediators of pericellular proteolysis and physiological activators of pro-MMP-2. The MT-MMPs also exhibit differential inhibition by members of the tissue inhibitor of metalloproteinase (TIMP) family. Here we investigated the processing, catalytic activity, and TIMP inhibition of MT3-MMP (MMP-16). Inhibitor profile and mutant enzyme studies indicated that MT3-MMP is regulated on the cell surface by autocatalytic processing and ectodomain shedding. Inhibition kinetic studies showed that TIMP-3 is a high affinity inhibitor of MT3-MMP when compared with MT1-MMP (K(i) = 0.008 nm for MT3-MMP versus K(i) = 0.16 nm for MT1-MMP). In contrast, TIMP-2 is a better inhibitor of MT1-MMP. MT3-MMP requires TIMP-2 to accomplish full pro-MMP-2 activation and this process is enhanced in marimastatpretreated cells, consistent with regulation of active enzyme turnover by synthetic MMP inhibitors. TIMP-3 also enhances the activation of pro-MMP-2 by MT3-MMP but not by MT1-MMP. TIMP-4, in contrast, cannot support pro-MMP-2 activation with either enzyme. Affinity chromatography experiments demonstrated that pro-MMP-2 can assemble trimolecular complexes with a catalytic domain of MT3-MMP and TIMP-2 or TIMP-3 suggesting that pro-MMP-2 activation by MT3-MMP involves ternary complex formation on the cell surface. These results demonstrate that TIMP-3 is a major regulator of MT3-MMP activity and further underscores the unique interactions of TIMPs with MT-MMPs in the control of pericellular proteolysis.  相似文献   

9.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

10.
Genes associated with regulation of membrane-type matrix metalloproteinase-1 (MT1-MMP)-mediated pro-MMP-2 processing were screened in 293T cells by a newly developed expression cloning method. One of the gene products, which promoted processing of pro-MMP-2 by MT1-MMP was claudin-5, a major component of endothelial tight junctions. Expression of claudin-5 not only replaced TIMP-2 in pro-MMP-2 activation by MT1-MMP but also promoted activation of pro-MMP-2 mediated by all MT-MMPs and MT1-MMP mutants lacking the transmembrane domain (DeltaMT1-MMP). A carboxyl-terminal deletion mutant of pro-MMP-2 (proDeltaMMP-2) was processed to an intermediate form by MT1-MMP in 293T cells and was further converted to an activated form by introduction of claudin-5. In contrast to the stimulatory effect of TIMP-2 on pro-MMP-2 activation by MT1-MMP, activation of pro-MMP-2 by DeltaMT1-MMP in the presence of claudin-5 and proDeltaMMP-2 processing by MT1-MMP were both inversely repressed by expression of exogenous TIMP-2. These results suggest that TIMP-2 is not involved in cluadin-5-induced pro-MMP-2 activation by MT-MMPs. Stimulation of MT-MMP-mediated pro-MMP-2 activation was also observed with other claudin family members, claudin-1, claudin-2, and claudin-3. Amino acid substitutions or deletions in ectodomain of claudin-1 abolished stimulatory effect. Direct interaction of claudin-1 with MT1-MMP and MMP-2 was demonstrated by immunoprecipitation analysis. MT1-MMP was co-localized with claudin-1 not only at cell-cell borders, but also at other parts of the cells. TIMP-2 enhanced cell surface localization of MMP-2 mediated by MT1-MMP, and claudin-1 also stimulated it. These results suggest that claudin recruits all MT-MMPs and pro-MMP-2 on the cell surface to achieve elevated focal concentrations and, consequently, enhances activation of pro-MMP-2.  相似文献   

11.
Expression of membrane type-1 matrix metalloproteinase (MT1-MMP) is closely correlated with tumor invasiveness. We investigated the effect of hyperthermia on the production of MT1-MMP in human fibrosarcoma HT-1080 cells. Heat shock at 42 degrees C suppressed the production and gene expression of MT1-MMP in HT-1080 cells. Heat shock-induced suppression of MT1-MMP production resulted in the inhibition of progelatinase A (proMMP-2) activation and the increased release of tissue inhibitor of metalloproteinases 2 from cell surface. In addition, in vitro tumor invasion assay in a Matrigel model indicated that heat shock inhibited the invasive activity of HT-1080 cells. These results suggest that heat shock preferentially suppresses the production of MT1-MMP and thereby inhibits proMMP-2 activation, events which subsequently inhibit tumor invasion. Therefore, heat shock shows an anti-invasive effect along with the known mechanism of inhibiting tumor growth.  相似文献   

12.
Osteoblast-derived matrix metalloproteinases (MMPs) are considered to play a crucial role in bone formation and initiation of bone resorption by degrading the bone matrix. MMP-2 is constitutively secreted in a latent zymogen by osteoblasts, and requires the process of activation mediated by membrane-type matrix metalloproteinase-1 (MT1-MMP)/tissue inhibitor of metalloproteinase (TIMP-2) complex in the cell surface. Bone is one target tissue for progestins. In the present study, we observed the effects of progesterone on proMMP-2 activation and MT1-MMP expression, and also TIMP-2 levels in osteoblastic MG-63 cells. Gelatin zymograms and ELISA showed that progesterone have no effects on proMMP-2 activation. Using Western immunoblot analysis, we unexpectedly found that treatment with increasing doses of progesterone in MG-63 cells caused a dose-dependent increase in expression of MT1-MMP protein, and after 48h treatment, progesterone at 10(-8)M increased MT1-MMP protein level. Confocal immunohistochemistry analysis also confirmed that progesterone induced MT1-MMP expression in MG-63 cells. The results of Northern blot analysis showed that progesterone at 10(-8)M increased MT1-MMP protein levels after 48 h treatment. We also found that TIMP-2 levels were undetectable in MG-63 cells. In conclusion, progesterone increases MT1-MMP protein and mRNA levels in MG-63 cells, but has no effects on proMMP-2 activation, which is partly attributable to the undetectable levels of tissue inhibitor of metalloproteinase-2 (TIMP-2). Our studies suggest that TIMP-2 is involved in proMMP-2 activation, and regulation of MT1-MMP by progesterone may contribute to its actions on bone formation.  相似文献   

13.
Matrix metalloproteinase-2 (MMP-2) has been suggested to play a crucial role in tumor invasion and angiogenesis. In order to understand the mechanisms underlying proMMP-2 activation, we compared the biochemical and cellular events triggered by two potent MMP-2 activators, the lectin concanavalin A (ConA) and the cytoskeleton disrupting agent cytochalasin D (CytoD). Incubation of U87 human glioma cells for 24 h in the presence of ConA or CytoD induced a marked activation of proMMP-2 and this activation was correlated in both cases with an increase in the mRNA levels of MT1-MMP. At the protein level, proMMP-2 activation induced by CytoD or ConA strongly correlated with the appearance of a 43-kDa MT1-MMP proteolytic breakdown product in cell lysates. Interestingly, CytoD also induced a very rapid (2 h) activation of proMMP-2 that was independent of protein synthesis. Under these conditions, CytoD also promoted the rapid proteolytic breakdown of the 63 kDa pro form of MT1-MMP, resulting in the appearance of the 43 kDa MT1-MMP processed form. Overexpression of a recombinant full-length MT1-MMP protein in glioma cells resulted in the activation of proMMP-2 that was correlated with the generation of the 43 kDa fragment of the protein. By contrast, overexpression of the protein in COS-7 cells promoted proMMP-2 activation without inducing the production of the 43 kDa fragment. These results thus suggest that activation of proMMP-2 occurs through both translational and post-translational mechanisms, both involving proteolytic processing of membrane-associated MT1-MMP. This processing of MT1-MMP is, however, not essential to proMMP-2 activation but may represent a regulatory mechanism to control the activity of MT1-MMP.  相似文献   

14.
Cell invasion requires cooperation between adhesion receptors and matrix metalloproteinases (MMPs). Membrane type (MT)-MMPs have been thought to be primarily involved in the breakdown of the extracellular matrix. Our report presents evidence that MT-MMPs in addition to the breakdown of the extracellular matrix may be engaged in proteolysis of adhesion receptors on tumor cell surfaces. Overexpression of MT1-MMP by glioma and fibrosarcoma cells led to proteolytic degradation of cell surface tissue transglutaminase (tTG) at the leading edge of motile cancer cells. In agreement, structurally related MT1-MMP, MT2-MMP, and MT3-MMP but not evolutionary distant MT4-MMP efficiently degraded purified tTG in vitro. Because cell surface tTG represents a ubiquitously expressed, potent integrin-binding adhesion coreceptor involved in the binding of cells to fibronectin (Fn), the proteolytic degradation of tTG by MT1-MMP specifically suppressed cell adhesion and migration on Fn. Reciprocally, Fn in vitro and in cultured cells protected its surface receptor, tTG, from proteolysis by MT1-MMP, thereby supporting cell adhesion and locomotion. In contrast, the proteolytic degradation of tTG stimulated migration of cells on collagen matrices. Together, our observations suggest both an important coreceptor role for cell surface tTG and a novel regulatory function of membrane-anchored MMPs in cancer cell adhesion and locomotion. Proteolysis of adhesion proteins colocalized with MT-MMPs at discrete regions on the surface of migrating tumor cells might be controlled by composition of the surrounding ECM.  相似文献   

15.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a collagenolytic enzyme that has been implicated in normal development and in pathological processes such as cancer metastasis. The activity of MT1-MMP is regulated extensively at the post-translational level, and the current data support the hypothesis that MT1-MMP activity is modulated by glycosylation. Enzymatic deglycosylation, site-directed mutagenesis, and lectin precipitation assays were used to demonstrate that MT1-MMP contains O-linked complex carbohydrates on the Thr(291), Thr(299), Thr(300), and/or Ser(301) residues in the proline-rich linker region. MT1-MMP glycoforms were detected in human cancer cell lines, suggesting that MT1-MMP activity may be regulated by differential glycosylation in vivo. Although the autolytic processing and interstitial collagenase activity of MT1-MMP were not impaired in glycosylation-deficient mutants, cell surface MT1-MMP-catalyzed activation of pro-matrix metalloproteinase-2 (proMMP-2) required proper glycosylation of MT1-MMP. The inability of carbohydrate-free MT1-MMP to activate proMMP-2 was not a result of defective MT1-MMP zymogen activation, aberrant protein stability, or inability of the mature enzyme to oligomerize. Rather, our data support a mechanism whereby glycosylation affects the recruitment of tissue inhibitor of metalloproteinases-2 (TIMP-2) to the cell surface, resulting in defective formation of the MT1-MMP/TIMP-2/proMMP-2 trimeric activation complex. These data provide evidence for an additional mechanism for post-translational control of MT1-MMP activity and suggest that glycosylation of MT1-MMP may regulate its substrate targeting.  相似文献   

16.
Procollagenase-3 (proMMP-13) can be activated by soluble or cell associated membrane type matrix metalloproteinase 1 (MT1-MMP). In this study we show that the cell based activation of proMMP-13 by MT1-MMP was dependent on the C-terminal domain, as delta(249-451) proMMP-13, which lacks the haemopexin domain, and a chimaera from N-terminal MMP-13 and C-terminal MMP-19 (proMMP-13/19) were not processed by MT1-MMP expressing cells. Only the initial cleavage at Gly(35)-Ile(36) was dependent on MT1-MMP activity, as conversion to the active enzyme (Tyr(85) N-terminus) required a functional MMP-13 active site. Unlike proMMP-2 activation, this process was independent of tissue inhibitor of metalloproteinase-2 (TIMP-2) as MT1-MMP expressing cells from the TIMP-2-/- mouse efficiently activated proMMP-13.  相似文献   

17.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.  相似文献   

18.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

19.
20.
Membrane-type matrix metalloproteinase-1 (MT1-MMP) plays a key role in tumor invasion and metastasis by degrading the extracellular matrix and activating proMMP2. Here we show that the conserved hemopexin domain is required for MT1-MMP-mediated invasion and growth in three-dimensional type I collagen matrix but not proMMP2 activation. Deletion of the hemopexin domains in MT1-, MT2-, MT3-, MT5-, and MT6-MMP does not impair their abilities to activate proMMP2. In fact, hemopexin-less MT5- and MT6-MMP activate proMMP2 better than their wild type counterparts. On the other hand, hemopexin-less MT1-MMP fails to promote cell invasion into type I collagen but retains the capacity to enhance the growth of Madin-Darby canine kidney cells as cysts in three-dimensional collagen matrix. Moreover, the hemopexin domain is also required for MT1-MMP-mediated invasion/scattering of MCF-7 cells in three-dimensional collagen matrix. Because growth and invasion in a three-dimensional model may correlate with tumor invasiveness in vivo, our data suggest that the hemopexin domains of MT-MMPs should be targeted for the development of anti-cancer therapies by employing screening assays developed for three-dimensional models rather than their enzymatic activity toward proMMP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号