首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used an intracellular fluorescent probe, FURA-2M, to examine the responses of isolated rat chromaffin cells to applications of 1 mM acetylcholine (ACh). Our data showed two different populations of the cell responses to such stimulation. Responses of the first type demonstrated fast rise and decay phases of the Ca2+ transients and no significant decrease in their amplitude during repetitive stimulation of the cell with ACh. Cell responses of the second type showed remarkably slower rise and decay phases of the Ca2+ transients and a noticeable drop of the cell responses during repetitive ACh stimulation that could be recovered after KCl depolarization. We find no significant differences in the amplitudes of the transients in these two populations of the cells. We conclude that there is heterogeneity of the chromaffin cells according to their ACh receptors: the first subpopulation predominantly expresses ionotropic (nicotinic) receptors (n cells), whereas the second cell population has mainly metabotropic (muscarinic) ones (m cells), which are associated with Ca2+ release from the intracellular stores.  相似文献   

2.
We studied the involvement of the mitochondria playing the role of a calcium store in the control of calcium exchange in cerebellar neurons of a fish species tolerant to hypoxia, crucian (Carassius gibelio). In our experiments we used an ionophore, CCCP, that blocked accumulation of calcium by the above organelles. The intracellular concentration of free Ca2+ ([Ca2+] і ) was measured using a calcium-sensitive dye, Fura-2AM, and the microfluorescent technique. We found that cerebellar neurons of Carassius gibelio possess a well-expressed system clearing the cytoplasm from excessive Ca2+, and the mitochondria are actively involved in this process. Under conditions of suppression of the process of accumulation of calcium by the mitochondria under the action of CCCP, the amplitude of calcium transients increased by about 50%. In addition, the decay phase of depolarization-induced intracellular calcium transients was slowed down considerably. Therefore, our experiments are indicative of the significant role of the mitochondria in the control of calcium dynamics in cerebellar neurons of Carassius gibelio in the course of functional activity of these cells.  相似文献   

3.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

4.
Fedirko  N.  Vats  Ju.  Klevets  M.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2002,34(2-3):127-129
We showed that 5 M acetylcholine (ACh) and 100 M norepinephrine (NE) cause increases in the total Ca2+ content in acinar cells by 30 and 87% and in the exocytosis intensity by 15 and 20%, respectively. Application of 5 M ACh and 100 M NE increased the free cytosolic Ca2+ concentration ([Ca2+] i ) by 87 ± 2 and 140 ± 7 nM, respectively. Application of ACh and NE in a Ca2+-free external solution caused a [Ca2+] i increase that was 40 and 67% lower than in physiological solution. We postulate that the exocytosis developing upon neural stimulation of the gland results from generation of Ca2+ transients that are spreading from the basal to the apical region of the exocrine cell, where secretory granules are concentrated.  相似文献   

5.
Mitochondrial Ca(2+) uptake is usually thought to occur only when intracellular Ca(2+) concentration ([Ca(2+)](i)) is high. We investigated whether mitochondrial Ca(2+) removal participates in shaping [Ca(2+)](i) signals in arterial smooth muscle over a low [Ca(2+)](i) range. [Ca(2+)](i) was measured using fura 2-loaded, voltage-clamped cells from rat femoral arteries. Both diazoxide and carbonyl cyanide m-chlorophenylhydrazone (CCCP) depolarized the mitochondria. Diazoxide application increased resting [Ca(2+)](i), suggesting that Ca(2+) is sequestered in mitochondria. Over a low [Ca(2+)](i) range, diazoxide and CCCP slowed Ca(2+) removal rate, determined after a brief depolarization. When [Ca(2+)](i) was measured during sustained depolarization to -30 mV, CCCP application increased [Ca(2+)](i). When Ca(2+) transients were repeatedly evoked by caffeine applications, CCCP application elevated resting [Ca(2+)](i). Caffeine-induced Ca(2+) transients were compared before and after CCCP application using the half decay time, or time required to reduce increase in [Ca(2+)](i) by 50% (t((1/2))). CCCP treatment significantly increased t((1/2)). These results suggest that Ca(2+) removal to mitochondria in arterial smooth muscle cells may be important at a low [Ca(2+)](i).  相似文献   

6.
Calcium signaling system in plants   总被引:4,自引:0,他引:4  
  相似文献   

7.
Acetylcholine evokes endothelium-dependent vasodilation subsequent to a rise in intracellular calcium. Despite widespread application in human and animal studies, calcium responses to intravascular ACh have not been visualized in vivo. Microiontophoresis of ACh in tissue adjacent to an arteriole activates abluminal muscarinic receptors on endothelial cells within a "local" region of diffusion, but it is unknown whether ACh released in such fashion gains access to the flow stream resulting in further actions downstream. To test this hypothesis and provide new insight into calcium signaling in vivo, we studied the cremaster muscle microcirculation of anesthetized male Cx40(BAC)-GCaMP2 transgenic mice (n = 22; 5-9 mo; 33 ± 1 g) expressing the fluorescent calcium sensor GCaMP2 selectively in arteriolar endothelial cells. Submaximal ACh stimuli were delivered using microiontophoresis (1-μm pipette tip, 500 nA). With stimulus duration <500 ms or with the micropipette positioned within one vessel diameter (~30 μm) away from an arteriole, endothelial cell calcium fluorescence was restricted to the region of ACh diffusion (<200 μm). In contrast, with the micropipette tip positioned immediately adjacent to an arteriole or within its lumen, calcium fluorescence encompassed entire networks downstream. The velocity of downstream calcium signaling in response to ACh increased with centerline velocity of fluorescent tracer microbeads (r(2) > 0.99; range: <1 mm/s to >10 mm/s). Diverting arteriolar blood flow into a side branch redirected downstream fluorescence responses to ACh; occluding flow abolished responses. Blocking luminal muscarinic receptors (intravascular glycopyrrolate; 6 μg/kg) inhibited downstream responses reversibly. Through visualizing the actions of a "local" ACh stimulus on endothelial cell calcium fluorescence in vivo, the present findings illustrate that transmural diffusion and convection of an agonist can activate entire networks of arteriolar endothelial cells concomitant with its delivery in the flow stream.  相似文献   

8.
Adrenal medullary chromaffin cells secrete catecholamines (CA) in response to cholinergic receptor activation by acetylcholine (ACh) released from splacnic nerve terminals. In cultured bovine chromaffin cells nicotinic receptors play a preponderant (> 90%) role in the control of CA release. By contrast, we found and report here that up to 40% of the ACh-evoked CA secretion from cultured porcine chromaffin cells can be associated with muscarinic receptor activation. The following results support our belief that in porcine adrenal medullary cells ACh (100 M) evoked CA secretion is mediated by both nicotinic and muscarinic cholinergic receptors. 1) Hexamethonium (100 M), a nicotinic receptor antagonist, inhibited ACh-induced CA secretion to ca. 40% of the control release and atropine (1 M), a muscarinic receptor antagonist, inhibited to ca. 60% of the control value. 2) We also found that ACh (100 M) evoked intracellular Ca2+ concentration ([Ca2+]i) rise was inhibited by these receptor antagonists to a different extent, and reversibly reduced by lowering the concentration of Ca2+ in the external medium ([Ca2+]o). This last maneuver ([Ca2+]o < 0.1 M) per se caused a marked reduction in the peak phase of the [Ca2+]i rise evoked by ACh (40% of the control response). Switching the external medium back to physiologic [Ca2+]o in the continued presence of ACh caused a partial recovery of the elevated [Ca2+]i. This [Ca2+]o-dependent [Ca2+]i rise was blocked by hexamethonium (100 M) but not by atropine (1 M). Conversely, the ACh-evoked [Ca2+]i rise in low external [Ca2+]o was blocked by atropine but not by hexamethonium. From these data we conclude that in porcine adrenal medullary cells an important fraction (ca. 0.4) of both ACh-induced CA secretion and peak [Ca2+]i rise is due to muscarinic receptor activation.  相似文献   

9.
The participation of different calcium-regulated mechanisms in the generation of cytosolic Ca(2+) transients during neuronal excitation has been compared in isolated large and small primary (dorsal root ganglia (DRG)) and secondary (spinal dorsal horn (DH)) rat sensory neurones. As it was shown before in murine primary sensory neurones the application of mitochondrial protonophore CCCP by itself induced only small elevation of [Ca(2+)](i). However, its preceding application substantially increased the peak amplitude of depolarization-induced transients. Application of CCCP immediately after termination of the depolarizing pulse induced in both types of primary neurones a massive release of Ca(2+) from mitochondria into the cytosol. In secondary neurones application of CCCP by itself induced a substantial release of Ca(2+) from the mitochondria, but its preceding application resulted in only an insignificant increase in the peak amplitude of depolarization-triggered calcium transients. Application of CCCP immediately after termination of depolarization elicited a small release of Ca(2+), which became more pronounced when the application was delayed. Preceding application of CCCP increased the amplitude of the transients induced by caffeine-triggered Ca(2+) release from the endoplasmic reticulum in secondary neurones and did not affect those in large primary neurones. These findings may be explained by substantial differences in the density and distribution of mitochondria in the cytosol of primary and secondary sensory neurones. This suggestion was confirmed electronmicroscopically, showing a much lower density of mitochondria near plasmalemma in secondary sensory neurones and predominant clustered location of mitochondria beneath the plasmalemma in the primary cells. The possible functional importance of these differences is discussed.  相似文献   

10.
Abstract

Calcium transients play an essential role in cardiomyocytes and electromagnetic fields (EMF) and affect intracellular calcium levels in many types of cells. Effects of EMF on intracellular calcium transients in cardiomyocytes are not well studied. The aim of this study was to assess whether extremely low frequency electromagnetic fields (ELF-EMF) could affect intracellular calcium transients in cardiomyocytes. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to rectangular-wave pulsed ELF-EMF at four different frequencies (15?Hz, 50?Hz, 75?Hz and 100?Hz) and at a flux density of 2?mT. Intracellular calcium concentration ([Ca2+]i) was measured using Fura-2/AM and spectrofluorometry. Perfusion of cardiomyocytes with a high concentration of caffeine (10?mM) was carried out to verify the function of the cardiac Na+/Ca2+ exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca2+-ATPase (SERCA2a). The results showed that ELF-EMF enhanced the activities of NCX and SERCA2a, increased [Ca2+]i baseline level and frequency of calcium transients in cardiomyocytes and decreased the amplitude of calcium transients and calcium level in sarcoplasmic reticulum. These results indicated that ELF-EMF can regulate calcium-associated activities in cardiomyocytes.  相似文献   

11.
Summary Exogeneous cyclic AMP (cAMP, 10–8M), when added together with acetylcholine (ACh, 500 M) to dissociated chick embryo cells, blocked the ACh-stimulated increase in the level of cytosolic free Ca2+ ([Ca2+]i). This inhibiting action of exogeneous cAMP is probably mediated by intracellular cyclic GMP (cGMP) and cAMP.  相似文献   

12.
The involvement of different subtypes of voltage-sensitive Ca2+ channels in the initiation of field stimulation-induced endogenous adenosine triphosphate (ATP) and [3H]acetylcholine ([3H]ACh) release was investigated in the superfused rat habenula slices. ATP, measured by the luciferin-luciferase assay, and [3H]ACh were released simultaneously from the tissue in response to low frequency electrical stimulation (2 Hz, 2.5 msec, 360 shocks). The N-type Ca2+ channel blocker -conotoxin GVIA (-CgTX, 0.01–1 M) reduced the stimulation-evoked release of ATP and [3H]ACh in a dose-dependent manner. Similarly, the P-type Ca2+ channel antagonist -agatoxin IVA (-Aga IVA) (0.05 M) and the inorganic Ca2+ channel blocker Cd2+ (0.2 mM) inhibited the outflow of both transmitters, while Ni2+ (0.1 mM) was without significant effect. A high correlation was observed between the percent inhibition of ATP release and percent inhibition of ACh release caused by the different Ca2+ antagonists. Long-term perfusion (i.e., 90 min) with Ca2+ free solution inhibited the evoked-release of ATP and [3H]ACh. In contrast, perfusion of slices with the same media for a shorter time (i.e., 20 min) did not reduce the release of [3H]ACh and ATP but even increased the evoked-release of ATP about fourfold. The breakdown of extracellular ATP was not blocked under low [Ca2+]0 condition, measured by the creatine phosphokinase assay and HPLC-UV technique. Application of extra- or intracellular Ca2+ chelators, and dipyridamole (2 M), the nucleoside transporter inhibitor, did not reduce the excess release of ATP after short-term perfusion with Ca2+-free media. Tetrodotoxin (TTX, 1 M), while inhibiting the majority of ATP release under normal conditions, was also unable to reduce release under low [Ca2+]0 conditions. In summary, we showed that both N- and P-type Ca2+ channels are involved in the initiation of electrical stimulation-evoked release of ATP and [3H]ACh in the rat habenula under normal extracellular calcium concentration. Under low [Ca2+]0 conditions an additional release of ATP occurs, which is not associated with action potential propagation.  相似文献   

13.
The object of the study was to compare the capability of glibenclamide to block the effects of K+-ATP channel activators on action potential duration and steady state whole cell current to its efficiency in counteracting the effects of hypoxia or metabolic poisons in the presence of glycolytic substrate. The modulation of action potential duration by 30 M glibenclamide was tested in perfused hearts subjected to hypoxia or to the K+-ATP channel opener pinacidil. Similar protocols were used to study the modifications of the steady state whole cell current in isolated ventricular myocytes. It was found that glibenclamide did not prevent early action potential shortening induced by hypoxia but produced a partial recovery after 15 min of exposure. At the steady state the action potential duration had lengthened by 53±6% at plateau level and 42±3% at 95% repolarization. In contrast, action potential shortening induced by 100 M pinacidil was fully reversed by glibenclamide within 2 min. Freshly dispersed ventricular myocytes were characterized in control conditions as for the properties of the steady state current. This current, measured at the end of 450 ms long pulses showed typical inward rectification that was abolished by 50 M Ba2+. Cyanide (2 mM), carbonyl-cyanide m-chlorophenylhydrazone (CCCP, 200 nM) and BRL 38227 (30 M) produced characteristic increases in time independent outward currents. Glibenclamide abolished the outward current induced by BRL 38227 and the concomitant action potential shortening. Addition of cyanide in the presence of glibenclamide and BRL 38227 produced a new increase in outward current accompanied by action potential shortening. In the absence of K+-ATP channel activators, glibenclamide partly inhibited the CCCP induced current. Our data suggested that the delayed onset of glibenclamide action in hypoxic hearts is not due to diffusion barriers. They rather support the view that mechanisms other than K+-ATP channel activation could determine the early action potential shortening in whole hearts. The partial recovery observed under glibenclamide may be due, in part, to channel desensitization but also reflect the contribution of more than one current system to the action potential shortening because the glibenclamide insensitive fraction of the CCCP induced current is partly blocked by low concentrations of Ba2+. Differences with other data in the literature are attributed to the degree to metabolic blockade, to species differences, and to the inherent heterogeneities of the whole heart model where non-muscle cells may modulate the response to hypoxia.  相似文献   

14.
It is well-known that pH changes can influence a lot of cellular processes. In this work, we have specifically studied the influence of alkalinization, which can be developed in spinal cord neurons during hyperventilation (respiratory alkalosis) and chronic renal failure (metabolic alkalosis) on calcium homeostasis. Application of Tyrode solution with increased pH (pH = 8.8) to secondary sensory neurons isolated from rat spinal dorsal horn induced elevation of intracellular free calcium concentration in the cytosol ([Ca2+]i) if applied after membrane depolarization. Repetitive application of alkaline solution led to disappearance of such elevations. Depletion of endoplasmic reticulum (ER) calcium stores by 30 mM caffeine almost completely blocked the effect of elevated extracellular pH. If caffeine-induced [Ca2+]i transients were evoked during alkalinization, their amplitudes were decreased by 41%. Preapplication of 500 nM ionomycin resulted in disappearance of alkalinization-induced [Ca2+]i transients, whereas prolonged applications (for 20 min) of 200 nM thapsigargin, a blocker of Ca2+ ATPase of the endoplasmic reticulum, resulted in disappearance of the rapid phase of the [Ca2+]i transients induced by alkalinization. Preapplication of the mitochondrial protonophore CCCP (10 microM) also induced changes in the alkalinization-induced calcium response--it lost its peak and was transformed into an irregular wave terminating in several seconds. The data obtained indicate that alkalinization induces an increase of [Ca2+]i level in the investigated neurons via a combined action of both intracellular Ca2+-accumulating structures--the endoplasmic reticulum and mitochondria. This suggestion was supported by morphological data that both structures in these neurons are tightly connected and may interact during release of accumulated calcium ions.  相似文献   

15.
Summary Intracellular pH (pH i ) of the acinar cells of the isolated, superfused mouse lacrimal gland has been measured using pH-sensitive microelectrodes. Under nonstimulated condition pH i was 7.25, which was about 0.5 unit higher than the equilibrium pH. Alterations of the external pH by ±0.4 unit shifted pH i only by ±0.08 unit. The intracellular buffering value determined by applications of 25mm NH 4 + and bicarbonate buffer solution gassed with 5% CO2/95% O2 was 26 and 46mm/pH, respectively Stimulation with 1 m acetylcholine (ACh) caused a transient, small decrease and then a sustained increase in pH i . In the presence of amiloride (0.1mm) or the absence of Na+, application of ACh caused a significant decrease in pH i and removal of amiloride or replacement with Na+-containing saline, respectively, rapidly increased the pH i . Pretreatment with DIDS (0.2mm) did not change the pH i of the nonstimulated conditions; however, it significantly enhanced the increase in pH i induced by ACh. The present results showed that (i) there is an active acid extrusion mechanism that is stimulated by ACh; (ii) stimulation with ACh enhances the rate of acid production in the acinar cells; and (iii) the acid extrusion mechanism is inhibited by amiloride addition to and Na+ removal from the bath solution. We suggest that both Na+/H+ and HCO 3 /Cl exchange transport mechanisms are taking roles in the intracellular pH regulation in the lacrimal gland acinar cells.  相似文献   

16.
Summary The distribution of calcium between isolated rat liver mitochondria and the extramitochondrial medium at 37°C and in the presence of 2mm inorganic phosphate, 3mm ATP, 0.05 or 1.1mm free magnesium and a calcium buffer, nitrilotriacetic acid, was investigated using a45Ca exchange technique. The amounts of40Ca in the mitochondria and medium were allowed to reach equilibrium before initiation of the measurement of45Ca exchange. At 0.05mm free magnesium and initial extramitochondrial free calcium concentrations of between 0.15 and 0.5 m, the mitochondria accumulated calcium until the extramitochondrial free calcium concentration was reduced to 0.15 m. Control experiments showed that the mitochondria were stable under the incubation conditions employed. The45Ca exchange data were found to be consistent with a system in which two compartments of exchangeable calcium are associated with the mitochondria. Changes in the concentration of inorganic phosphate did not significantly affect the45Ca exchange curves, whereas an increase in the concentration of free magnesium inhibited exchange. The maximum rate of calcium outflow from the mitochondria was estimated to be 1.7 nmol/min per mg of protein, and the value ofK 0.5 for intramitochondrial exchangeable calcium to be about 1.6 nmol per mg of protein. Ruthenium Red decreased the fractional transfer rate for calcium inflow to the mitochondria while nupercaine affected principally the fractional transfer rates for the transfer of calcium between the two mitochondrial compartments. The use of the incubation conditions and45Ca exchange technique described in this report for studies of the effects of agents which may alter mitochondrial calcium uptake or release (e.g., the pre-treatment of cells with hormones) is briefly discussed.  相似文献   

17.
The effects of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on the rate of the oxygen uptake by excised wheat roots and their heat generation and K+ion content in the incubation medium were followed for 6 h. When the incubation medium contained 0.5 M CCCP, the roots were found to exhibit a reversible release of K+ions and the stimulation of the oxygen uptake. These responses were found to correlate with considerably enhanced heat generation by the plant tissues. It is proposed that these changes were due to the activation of both the energy system of the root cells and the H+-ATPase in the plasmalemma. The roots treated with 5 M CCCP exhibited an inhibition of the oxygen uptake and heat generation (1–3 h) followed by the stimulation of these processes by the 5th or 6th hour of the experiment; however, the potassium ion release by the roots was not reversed under these conditions. Uncoupling the processes of oxidation and phosphorylation in mitochondria of the root cells (the 4th–6th h) seems to underlie the observed responses. In the roots treated with 50 M CCCP, we observed the irreversible release of K+ions from the root cells, the considerable inhibition of the oxygen uptake by the latter, and the initial burst and then decline in heat generation. These effects suggest that, under the experimental conditions, a disturbance in cellular homeostasis and energy supply occurred and eventually resulted in cell death.  相似文献   

18.
1. Intracellular recordings were made from identified LP11, RBc4, D1 and E4 neurons in perioesophageal ganglionic ring with buccal ganglia of the mollusc Helix pomatia. 2. The modulations of acetylcholine (ACh)-induced current by vitamin E in these neurons were investigated using two-microelectrode intracellular recording and voltage-clamp techniques. 3. ACh receptors function on LP11 and RBc4 neurons was strongly regulated by intracellular calcium ions. For these ACh receptors application of 10(-6) to 10(-4) M vitamin E and calcium influx both induced an enhancement of the ACh-induced chloride current. Application of 10(-5) to 5.10(-5) M arachidonic acid on the same identified LP11 and RBc4 neurons was shown to evoke a decrease of the ACh-induced chloride current. 4. The elevation of calcium levels into D1 and E4 neurons induced a faint decrease of ACh-induced chloride current, but vitamin E and arachidonic acid were ineffective. 5. The calmodulin inhibitor, chloropromazine (6.10(-5) M), strongly inhibited the enhancing effect of calcium influx on ACh-induced chloride current in LP11 and RBc4 neurons, but it had a weak influence on the effect of vitamin E. 6. The effect of vitamin E on surface distribution of functional ACh receptors in LP11 and RBc4 neurons was found. 7. Application of 10(-4) to 10(-6) M vitamin E (DL-alpha-tocopherol) triggered mechanisms, which after a 5 to 45-min period lead to appearance of functional ACh receptors on the parts of neuronal soma, which were further from the axon. 8. Arachidonic acid (vitamin F) evoked a disappearance of functional ACh receptors, which were activated by vitamin E.  相似文献   

19.
Summary According to previous studies hyposmotic swelling of Madin Darby Canine Kidney (MDCK) cells leads to a marked decrease of cell membrane resistance. The present study has been performed to identify the underlying ion channels using the patchclamp technique: reduction of extracellular osmolarity to 230 mmol/liter leads to a transient activation of K+ channels and a sustained activation of anion channels. The K+ channels are inwardly rectifying with a single-channel slope conductance of 56 ± 3 pS at –50 mV (cell negative) and of 29 ± 2 pS at 0 mV PD across the patch 150 mmol/liter K+ in pipette). The same channels are activated by an increase of intracellular calcium activity, as shown previously. The anion channels display a single-channel slope conductance of 41 ± 4 pS at –50 mV (cell negative) and of 25 ± 3 pS at 0 mV PD across the patch (150 mmol/liter Cl in pipette). The channel is anion selective and conducts both bicarbonate and chloride with a preference for bicarbonate. Its open probability is not affected by changing intracellular calcium from 0.1–10 mol/liter. The channels observed explain the effects of cell swelling on PD, ion selectivity and resistance of the cell membrane in MDCK cells.The authors gratefully acknowledge the valuable discussion with Drs. P. Deetjen, E. Wöll and F. Friedrich, the skilled technical assistance of G. Siber and S. David, and the excellent mechanic and electronic support by K.-H. Streicher, Ing. M. Hirsch and M. Plank. This study was supported by the Fonds zur Förderung der wissenschaftlichen Forschung, Grant No. P5813 and P6792M.  相似文献   

20.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号