首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The ;initial' 5-aminolaevulinate synthetase activity, that is the activity observed immediately after cell disruption, in extracts prepared from unharvested semianaerobically grown Rhodopseudomonas spheroides, was twice that observed under the same assay conditions in extracts prepared from harvested cells. 2. The effect of oxygenation of a culture on the ;maximum' aminolaevulinate synthetase activity, that is the activity observed 1h after disruption of harvested cells, is markedly influenced by the contents of the growth medium. Oxygenation of organisms for 1h in the medium in which they have grown produces an 80-90% decrease in maximum activity, whereas similar treatment of organisms resuspended in fresh medium produces less than a 40% decrease. 3. This protective effect of fresh medium is absolutely dependent on the presence of sulphate. When cells are suspended in sulphate-deficient fresh medium, the maximum activity falls by 65-75% even without oxygenation. A high maximum activity is regenerated when sulphate is resupplied. 4. When organisms are oxygenated in the medium in which they have grown, the cellular contents of GSH+GSSG and cysteine+cystine fall very markedly and homolanthionine is formed. Both the fall in aminolaevulinate synthetase activity and the changes in sulphur metabolism are largely prevented by the addition of compounds which stimulate synthesis of cysteine de novo or inhibit the conversion of cysteine S into homocysteine S. 5. The maximum aminolaevulinate synthetase activity was directly proportional to the GSH+GSSG content of all cell preparations. In glutathione-depleted extracts the ;low'-activity enzyme could be re-activated in vitro by the addition of GSH, GSSG, cysteine or cystine, whereas in extracts with a high glutathione content the ;high'-activity enzyme was unaffected by these sulphur compounds. 6. The activation of low-activity enzyme with exogenous sulphur compounds was prevented by excluding air or by adding NADH. Studies with purified enzyme indicate that sulphur compounds do not interact directly with the enzyme, but that their effect is mediated by a number of other endogenous factors.  相似文献   

2.
The global sulphur cycle has implications for human health, climate change, biogeochemistry and bioremediation. The organosulphur compounds that participate in this cycle not only represent a vast reservoir of sulphur but are also used by prokaryotes as sources of energy and/or carbon. Closely linked to the inorganic sulphur cycle, it involves the interaction of prokaryotes, eukaryotes and chemical processes. However, ecological and evolutionary studies of the conversion of organic sulphur compounds are hampered by the poor conservation of the relevant pathways and their variation even within strains of the same species. In addition, several proteins involved in the conversion of sulphonated compounds are related to proteins involved in sulphur dissimilation or turnover of other compounds. Therefore, the enzymes involved in the metabolism of organic sulphur compounds are usually not correctly annotated in public databases. To address this challenge, we have developed HMSS2, a profiled Hidden Markov Model-based tool for rapid annotation and synteny analysis of organic and inorganic sulphur cycle proteins in prokaryotic genomes. Compared to its previous version (HMS-S-S), HMSS2 includes several new features. HMM-based annotation is now supported by nonhomology criteria and covers the metabolic pathways of important organosulphur compounds, including dimethylsulphoniopropionate, taurine, isethionate, and sulphoquinovose. In addition, the calculation speed has been increased by a factor of four and the available output formats have been extended to include iTol compatible data sets, and customized sequence FASTA files.  相似文献   

3.
4.
Growth experiments and short term experiments in a stirred cuvette showed thatChromatium okenii strain Ostrau is not able to oxidize any reduced sulphur compounds except sulphide and elementary sulphur; thiosulphate, sulphite, and thioglycolate can not be utilized as reducing agents for photosynthesis. The cells are not able to use H2; hydrogenase could not be demonstrated. In the dark, sulphide is formed from intracellular sulphur and the carbon content of the cells decreases. Growth and turnover of sulphur compounds was followed in the light in the presence and absence of acetate as a second carbon source. Sulphide oxidation depends on the presence of CO2 and on light intensity, i.e. sulphur metabolism is governed by the photosynthetic activity of the cells.  相似文献   

5.
6.
Crucial roles in sulphur metabolism and plant defence have been described in recent years for the tripeptide thiol glutathione. In spite of this, the metabolism of glutathione and its response to stress conditions remained only partly understood. In many plants, one of the major difficulties in studying the control of glutathione synthesis is the low extractable activities of the enzymes involved. Consequently, several groups have exploited transformation technology using genes for the enzymes of glutathione synthesis or reduction. This approach has allowed the production of plants with systematically enhanced levels of glutathione (up to 4-fold higher than untransformed controls) and has permitted numerous insights into the control of glutathione synthesis or reduction state and its interaction with other areas of primary or defensive metabolism.  相似文献   

7.
Sulphur compounds present in coal impose severe limitations on its utilization since sulphur-containing gases emitted into the atmosphere upon direct combustion of coal cause serious environmental pollution problems. Removal of sulphur compounds from coal by microbial action has many advantages over physical and chemical desulphurization methods. The potential use of various microorganisms for the removal of sulphur compounds from coal is presented. Environmental conditions and major process variables affecting the process performance are identified and their possible effects are discussed. Various process schemes for microbial desulphurization (MDS) of coal are suggested. It is concluded that microbial methods have a high potential in removing sulphur compounds from coal. However, more research and development work is needed in this field to overcome present technological problems.  相似文献   

8.
9.

Background  

Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit.  相似文献   

10.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

11.
An innovative application of X‐ray absorption near edge structure (XANES) spectroscopy for the characterization of interactions of biotrophic plant pathogens with their hosts as exemplified by Puccinia triticina colonizing wheat leaves is described. Spatially resolved, synchrotron radiation‐based XANES spectroscopy was used for the detection of changes in sulphur metabolism induced by leaf rust infections. A significant accumulation of sulphate occurred at the site of the sporulating urediniosori of P. triticina. Compared with non‐infected leaf areas, minor changes in the spectra were observed for the non‐visibly colonized tissue neighbouring the rust sori. As the spectra for isolated urediniospores and the healthy leaf areas did not match the spectra of the urediniosori, a significant impact of the biotrophic pathogen on sulphur metabolism of wheat has been demonstrated. Spatially resolved XANES spectroscopy will extend the range of qualitative and quantitative methods for in situ investigations of host–pathogen interactions, thus contributing to enlarge our knowledge about the metabolism of diseased plants.  相似文献   

12.
The sulphur content of chondrocyte nuclei   总被引:1,自引:0,他引:1  
Summary The sulphur content as a measure of glycosaminoglycan content of growth plate cartilage was determined by energy dispersive x-ray analysis on fresh freeze dried unstained, unfixed ultra thin sections of rat growth plate. In the resting and proliferative zones, quantities of sulphur were found in the nuclei equal to that of the matrix. Less sulphur was present in the cytoplasm. In areas of cell degeneration, nuclear and cytoplasmic content of sulphur fell to levels a fraction of that seen in the matrix. It was presumed that most of the sulphur was in glycosaminoglycans. Although glycosaminoglycans have been reported in small amounts in the nuclei of cells, no study of the glycosaminoglycan content of chondrocyte nuclei has been reported. The use of freeze dried unstained, unfixed sections presumably prevented the migration of sulphur and glycosaminoglycans from compartment to compartment.Supported by grants from the Medical Research Council and the Shriners of North America  相似文献   

13.
When did oxygenic photosynthesis evolve?   总被引:1,自引:0,他引:1  
The atmosphere has apparently been oxygenated since the 'Great Oxidation Event' ca 2.4 Ga ago, but when the photosynthetic oxygen production began is debatable. However, geological and geochemical evidence from older sedimentary rocks indicates that oxygenic photosynthesis evolved well before this oxygenation event. Fluid-inclusion oils in ca 2.45 Ga sandstones contain hydrocarbon biomarkers evidently sourced from similarly ancient kerogen, preserved without subsequent contamination, and derived from organisms producing and requiring molecular oxygen. Mo and Re abundances and sulphur isotope systematics of slightly older (2.5 Ga) kerogenous shales record a transient pulse of atmospheric oxygen. As early as ca 2.7 Ga, stromatolites and biomarkers from evaporative lake sediments deficient in exogenous reducing power strongly imply that oxygen-producing cyanobacteria had already evolved. Even at ca 3.2 Ga, thick and widespread kerogenous shales are consistent with aerobic photoautrophic marine plankton, and U-Pb data from ca 3.8 Ga metasediments suggest that this metabolism could have arisen by the start of the geological record. Hence, the hypothesis that oxygenic photosynthesis evolved well before the atmosphere became permanently oxygenated seems well supported.  相似文献   

14.
The sulphur content as a measure of glycosaminoglycan content of growth plate cartilage was determined by energy dispersive x-ray analysis on fresh freeze dried unstained, unfixed ultra thin sections of rat growth plate. In the resting and proliferative zones, quantities of sulphur were found in the nuclei equal to that of the matrix. Less sulphur was present in the cytoplasm. In areas of cell degeneration nuclear and cytoplasmic content of sulphur fell to levels a fraction of that seen in the matrix. It was presumed that most of the sulphur was in glycosaminoglycans. Although glycosaminoglycans have been reported in small amounts in the nuclei of cells, no study of the glycosaminoglycan content of chondrocyte nuclei has been reported. The use of freeze dried unstained, unfixed sections presumably prevented the migration of sulphur and glycosaminoglycans from compartment to compartment.  相似文献   

15.
—Certain of the sulphur containing amino acids have been associated with synaptic transmission in the central nervous system. The enzymes involved in the synthesis of these putative neurotransmitter or modulator compounds have a different subcellular distribution in rat brain from those enzymes that catalyse the synthesis of other compounds in this pathway. Methionine adenosyltransferase and 5-methyltetrahydrofolate-homocysteine methyltransferase catalyse reactions that maintain the methylation functions of the pathway and are found in soluble fractions. Cystathionine β-synthase, cystathionase, cysteine dioxygenase and cysteine sulphinic acid decarboxylase catalyse the synthesis of those sulphur-containing amino acids implicated in neurotransmitter functions and these enzymes have both paniculate and soluble components. Serine hydroxymethyltransferase, which also has a particulate fraction in brain, is responsible for the synthesis of the neurotransmitter glycine, in addition to its role in the methionine-related metabolism of folate.  相似文献   

16.

Background  

Cysteine is a component in organic compounds including glutathione that have been implicated in the adaptation of plants to stresses. O-acetylserine (thiol) lyase (OAS-TL) catalyses the final step of cysteine biosynthesis. OAS-TL enzyme isoforms are localised in the cytoplasm, the plastids and mitochondria but the contribution of individual OAS-TL isoforms to plant sulphur metabolism has not yet been fully clarified.  相似文献   

17.
Elevated levels of phospholipases, prostaglandin synthases and lipoxygenases in colonic cells at various stages of malignancy indicate a strong link between dietary lipids and colon cancer. Lipoxygenase-catalysed arachidonic acid metabolism plays a key role in colorectal carcinogenesis and has the potential to be modulated by phenolic compounds. Plant-based foods are rich sources of phenolic compounds and in the human colon they are predominantly available as simple phenolics such as the benzoic acids. Benzoic acids were determined in faecal waters from four volunteers consuming a western-style diet. Structure-activity relationships were established for the lipoxygenase-catalysed oxygenation of arachidonic acid using an oxygen electrode. All compounds studied inhibited this reaction (21-73%; p<0.001) and many of the structural features could be rationalised by computational modelling. No correlation was observed with the ability to act as reductants, supporting the hypothesis that their mode of inhibition may not be by a direct redox effect on the non-haem iron.  相似文献   

18.
Co-metabolism   总被引:12,自引:0,他引:12  
There have been numerous instances reported when potentially recalcitrant compounds have been modified by microorganisms or completely mineralized by mixed communities or organisms; an example is pesticide biodegradation. Both situations rely upon the ability of microorganisms to transform compounds that they cannot utilize as sole sources of carbon and energy. This phenomenon of co-oxidation or co-metabolism has been fraught with confusion for many years as a result of the ambiguous use of terms and definitions. A redefinition of co-metabolism is proposed in an attempt to alleviate the problem: Co-metabolism--the transformation of a non-growth substrate in the obligate presence of a growth substrate or another transformable compound. The term 'non-growth substrate' describes compounds that are unable to support cell replication as opposed to an increase in biomass. This definition was devised primarily as a result of non-growth substrate metabolism studies with methane-utilizing bacteria. These studies are described in the text. The possible impact of endogenous polymer reserves on co-metabolic events is discussed. A number of examples where non-growth substrate metabolism is of environmental importance are presented, in particular the potential role of methane-oxidizing bacteria in the removal of CO from the environment. The evolutionary significance, if any, of fortuitous metabolism or co-metabolism is discussed, as are potential applications of these phenomena.  相似文献   

19.
Tryptophan is a precursor for many biologically active secondary metabolites. We have investigated the origin of indole pigments first described in the pityriasis versicolor-associated fungus Malassezia furfur . Some of the identified indole pigments have properties potentially explaining characteristics of the disease. As M. furfur is not amenable to genetic manipulation, we used Ustilago maydis to investigate the pathway leading to pigment production from tryptophan. We show by high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance analysis that the compounds produced by U. maydis include those putatively involved in the etiology of pityriasis versicolor. Using a reverse genetics approach, we demonstrate that the tryptophan aminotransferase Tam1 catalyses pigment biosynthesis by conversion of tryptophan into indolepyruvate. A forward genetics approach led to the identification of mutants incapable of producing the pigments. These mutants were affected in the sir1 gene, presumably encoding a sulphite reductase. In vitro experiments with purified Tam1 showed that 2-oxo 4-methylthio butanoate serves as a substrate linking tryptophan deamination to sulphur metabolism. We provide the first direct evidence that these indole pigments form spontaneously from indolepyruvate and tryptophan without any enzymatic activity. This suggests that compounds with a proposed function in M. furfur -associated disease consist of indolepyruvate-derived spontaneously generated metabolic by-products.  相似文献   

20.
In leather tanning industrial areas sulphide management represents a major problem. However, biological sulphide oxidation to sulphur represents a convenient solution to this problem. Elemental sulphur is easy to separate and the process is highly efficient in terms of energy consumption and effluent quality. As the oxidation process is performed by specialized bacteria, selection of an appropriate microbial community is fundamental for obtaining a good yield. Sulphur oxidizing bacteria (SOB) represent a wide-ranging and highly diversified group of microorganisms with the capability of oxidizing reduced sulphur compounds. Therefore, it is useful to select new microbes that are able to perform this process efficiently. For this purpose, an experimental membrane bioreactor for sulphide oxidation was set up, and the selected microbial community was characterized by constructing 16S rRNA gene libraries and subsequent screening of clones. Fluorescence in situ hybridization (FISH) was then used to assess the relative abundance of different bacterial groups. Sulphide oxidation to elemental sulphur proceeded in an efficient (up to 79% conversion) and stable way in the bioreactor. Both analysis of clone libraries and FISH experiments revealed that the dominant operational taxonomic unit (OTU) in the bioreactor was constituted by Gammaproteobacteria belonging to the Halothiobacillaceae family. FISH performed with the specifically designed probe tios_434 demonstrated that this OTU constituted 90.6+/-1.3% of the bacterial community. Smaller fractions were represented by bacteria belonging to the classes Betaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Clostridia, Mollicutes, Sphingobacteria, Bacteroidetes and Chlorobia. Phylogenetic analysis revealed that clone sequences from the dominant OTU formed a stable clade (here called the TIOS44 cluster), within the Halothiobacillaceae family, with sequences from many organisms that have not yet been validly described. The data indicated that bacteria belonging to the TIOS44 cluster were responsible for the oxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号