首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the acid hydrolysis of Streptococcus salivarius levan were studied by examining the weight-average molecular weight. The molecular weights were obtained in a continuous manner from light scattering. Two first order reactions were observed: an initial rapid reaction in competition with a slower reaction. Activation energies, activation entropies, as well as the rate dependence upon substrate and hydrogen ion concentrations were determined. The data seem to indicate that the fast reaction is related to the breaking of branch-point bonds while the slower reaction is related to the breaking of main-chain bonds. Thus, levan hydrolysis seems to be fundamentally different from the completely random degradation of other branched polysaccharides, i.e., dextran, glycogen, and amylopectin.  相似文献   

2.
Soluble inhibitors find widespread applications as therapeutic drugs to reduce the ability of eukaryotic cells, bacteria, or viruses to adhere to surfaces and host tissues. Mechanical forces resulting from fluid flow are often present under in vivo conditions, and it is commonly presumed that fluid flow will further add to the inhibitive effect seen under static conditions. In striking contrast, we discover that when surface adhesion is mediated by catch bonds, whose bond life increases with increased applied force, shear stress may dramatically increase the ability of bacteria to withstand detachment by soluble competitive inhibitors. This shear stress-induced protection against inhibitor-mediated detachment is shown here for the fimbrial FimH-mannose-mediated surface adhesion of Escherichia coli. Shear stress-enhanced reduction of bacterial detachment has major physiological and therapeutic implications and needs to be considered when developing and screening drugs.  相似文献   

3.
Soluble inhibitors find widespread applications as therapeutic drugs to reduce the ability of eukaryotic cells, bacteria, or viruses to adhere to surfaces and host tissues. Mechanical forces resulting from fluid flow are often present under in vivo conditions, and it is commonly presumed that fluid flow will further add to the inhibitive effect seen under static conditions. In striking contrast, we discover that when surface adhesion is mediated by catch bonds, whose bond life increases with increased applied force, shear stress may dramatically increase the ability of bacteria to withstand detachment by soluble competitive inhibitors. This shear stress-induced protection against inhibitor-mediated detachment is shown here for the fimbrial FimH-mannose-mediated surface adhesion of Escherichia coli. Shear stress-enhanced reduction of bacterial detachment has major physiological and therapeutic implications and needs to be considered when developing and screening drugs.  相似文献   

4.
An inactivation model previously developed to characterize the rate of enzyme activity loss in unstirred solutions was extended to take into account orthokinetic interactions resulting from convective mixing. A synergistic relationship between shear rate and temperature was observed; the rate of inactivation of the enzyme dextransucrase was unaffected by the action of shear below 25 degrees C, but was increased by the shear rate at 30 degrees C. Shear rate does not appear to influence the equilibrium between native and denatured dextransucrase either directly in solution or indirectly by augmenting the turnover of the gas-liquid interface. However, a second-order plot of the inverse of relative activity (A(O)/A) versus Gt (shear rate x time) of dextransucrase at a constant temperature was linear because of the influence of shear on the coagulation of the denatured enzyme. The addition of 0.01 g L(-1) of polyethylene glycol (MW 20,000) blocked this coagulation reaction, thereby completely inhibiting the shear-induced inactivation of dextransucrase at 30 degrees C. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
Elevated turbulent shear stresses associated with sufficient exposure times are potentially damaging to blood constituents. Since these conditions can be induced by mechanical heart valves, the objectives of this study were to locate the maximum turbulent shear stress in both space and time and to determine how the maximum turbulent shear stress depends on the cardiac flow rate in a pulsatile flow downstream of a tilting disk valve. Two-component, simultaneous, correlated laser velocimeter measurements were recorded at four different axial locations and three different flow rates in a straight tube model of the aorta. All velocity data were ensemble averaged within a 15 ms time window located at approximately peak systolic flow over more than 300 cycles. Shear stresses as high as 992 dynes/cm2 were found 0.92 tube diameters downstream of the monostrut, disk valve. The maximum turbulent shear stress was found to scale with flow rate to the 0.72 power. A repeatable starting vortex was shed from the disk at the beginning of each cycle.  相似文献   

6.
Media perfusion bioreactor systems have been developed to improve mass transport throughout three-dimensional (3-D) tissue-engineered constructs cultured in vitro. In addition to enhancing the exchange of nutrients and wastes, these systems simultaneously deliver flow-mediated shear stresses to cells seeded within the constructs. Local shear stresses are a function of media flow rate and dynamic viscosity, bioreactor configuration, and porous scaffold microarchitecture. We have used the Lattice-Boltzmann method to simulate the flow conditions within perfused cell-seeded cylindrical scaffolds. Microcomputed tomography imaging was used to define the scaffold microarchitecture for the simulations, which produce a 3-D fluid velocity field throughout the scaffold porosity. Shear stresses were estimated at various media flow rates by multiplying the symmetric part of the gradient of the velocity field by the dynamic viscosity of the cell culture media. The shear stress algorithm was validated by modeling flow between infinite parallel plates and comparing the calculated shear stress distribution to the analytical solution. Relating the simulation results to perfusion experiments, an average surface shear stress of 5x10(-5)Pa was found to correspond to increased cell proliferation, while higher shear stresses were associated with upregulation of bone marker genes. This modeling approach can be used to compare results obtained for different perfusion bioreactor systems or different scaffold microarchitectures and may allow specific shear stresses to be determined that optimize the amount, type, or distribution of in vitro tissue growth.  相似文献   

7.
Many experiments have measured the effect of force on the dissociation of single selectin bonds, but it is not yet clear how the force dependence of molecular dissociation can influence the rolling of cells expressing selectin molecules. Recent experiments using constant-force atomic force microscopy or high-resolution microscopic observations of pause-time distributions of cells in a flow chamber show that for some bonds, the dissociation rate is high at low force and initially decreases with force, indicating a catch bond. As the force continues to increase, the dissociation rate increases again, like a slip bond. It has been proposed that this catch-slip bond leads to the shear threshold effect, in which a certain level of shear rate is required to achieve rolling. We have incorporated a catch-slip dissociation rate into adhesive dynamics simulations of cell rolling. Using a relatively simple model for the shear-controlled association rate for selectin bonds, we were able to recreate characteristics of the shear threshold effect seen most prominently for rolling through L-selectin. The rolling velocity as a function of shear rate showed a minimum near 100 s-1. Furthermore, cells were observed to roll at a shear rate near the threshold, but detach and move more quickly when the shear rate was dropped below the threshold. Finally, using adhesive dynamics, we were able to determine ranges of parameters necessary to see the shear threshold effect in the rolling velocity. In summary, we found through simulation that the catch-slip behavior of selectin bonds can be responsible for the shear threshold effect.  相似文献   

8.
The limitation of thermal inactivation on catalytic activity in continuous enzymatic reactions is considered. Where an enzyme is retained in a reaction environment which is open to mass transfer of reaction components, the effect of enzyme inactivation on reactant conversion depends on the order of the chemical reaction and the pattern of fluid flow through the reaction volume. Equations expressing conversion as a function of time for first-order inactivation are presented for Michaelis-Menten kinetics and the limiting fluid flow conditions of plug flow and complete back-mixing. Substrate protection or destruction of an enzyme is also considered and it is shown theoretically that the catalytic life of an enzyme may be optimized by the proper choice of fluid flow pattern.  相似文献   

9.
Blackmond DG 《Chirality》2009,21(3):359-362
The concept that "recycling" of reactants may be key to the spontaneous generation of a homochiral state in closed autocatalytic reaction networks has recently been introduced and has been supported by computer simulations of such reaction networks. It has been suggested that unidirectional cycles maintained away from equilibrium may avoid the inevitable establishment of a racemic state, and under such conditions the explicit reverse reactions dictated by microscopic reversibility may be all be treated as having negligible rates. We show here that because the equilibrium constants in a recycled network are interdependent, it is not valid to neglect all reverse reactions simultaneously; a very low value for the rate constant of one reverse reaction in the network dictates that another reverse reaction in the same network will exhibit a large rate constant. This conclusion is general and applies to any closed mass system where the energy input is subject to microscopic reversibility. Therefore, chemical reversibility cannot be invoked as a mechanism for the evolution of a single chiral molecular state in thermally activated reactions.  相似文献   

10.
Enzymes subjected to shearing in a viscometer are partially inactivated. It is possible with viscometry to calculate the degree of inactivation that occura when an enzyme solution flows through a capillary tube. When shear rate × exposure time is less than 104, there is little or no inactivation. The masa average shear-rate × time or shear, for laminar flow in a cylindrical tube is simply 16L/3D. It is surprising that for a single pass through a tube, the masa average shear is independent of flow rate and shear rate.  相似文献   

11.
The rates of oxidation of several goitrogens by lactoperoxidase and the rates of inactivation of lactoperoxidase by the same goitrogens have been measured. The influence of iodide on both reactions has also been evaluated. It has been shown by us that iodide acts catalytically in regulating lactoperoxidase activity at pH 8.8. The rate data have been analyzed by a computer program which solves the differential equations for the above mentioned reactions. From this computer analysis we have been able to obtain binding constants of the goitrogens and inactivation rate constants of lactoperoxidase. Iodide was shown to inhibit goitrogenic activity either by increasing the rate of drug oxidation or by reducing the rate of enzyme inactivation, or both, depending on the particular drug. Iodide had little or no effect on the goitrogen-binding constants. We have also shown that the relative rates of enzyme inactivation can be correlated with the potency of the goitrogen as an antithyroid drug.  相似文献   

12.
F F Yew  N Davidson 《Biopolymers》1968,6(5):659-679
The rate of breakage by hydrodynamic shear of the cohered ends of λ-DNA molecules has been observed for the circular monomers, joined half molecules, and joined quarter molecules, in a capillary apparatus with known flow parameters. The rate constant for breakage has been measured as a function of shear stress, temperature, ionic strength, and molecular length. There is a large temperature coefficient, with an activation energy of 120 ± 20 kcal./mole. The values of d ln k/dG, where k is the rate constant for breaking and G is shear gradient, in aqueous solution at 25°C. are about 3.8 ± 0.3 × 10?4 see. The shear stresses needed for breakage of joined quarter molecules and of circular monomers, respectively, are about equal, and about half that needed for breakage of joined half molecules. The rate of breakage at a given shear stress increases with decreasing ionic strength, approximately as [Na+]?1.6. Self-protection effects are not observed for opening of circular monomers at a DNA concentration of 5 μg./ml. but are observed for breakage of joined half molecules at concentrations down to 0.5 μg./ml. The large temperature coefficient which is approximately equal to that of the thermal dissociation of the cohered ends is interpreted to mean that shear breakage is a mechanically assisted thermal reaction in which the thermal fluctuations provide most of the free energy of activation for breakage. A detailed model for this interpretation is presented. The self-protection effect implies that those molecules which break are not average molecules but exceptional ones which, due to some fluctuation, are more fully extended in the flow field.  相似文献   

13.
Shear-induced inactivation of alpha-amylase in a plain shear field   总被引:1,自引:0,他引:1  
A newly developed shearing device was used to study shear-induced inactivation of thermostable alpha-amylase in a plain shear field, under conditions comparable to extrusion. The results show that the inactivation can be described well with a first-order process, in which the inactivation energy largely depends on the shear stress, instead of specific mechanical energy or strain history. The resulting dependency of the rate of inactivation on the shear stress is very strong and nonlinear, which leads to the conclusion that in many cases the maximally applied shear stress determines the inactivation. Quantification of the inactivation rates gives design criteria for the application of enzymes in more viscous systems than conventionally used, provided that the reactor is designed such that no peak shear stresses occur.  相似文献   

14.
In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

15.

In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50 h Re m h 300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure ( p w ), wall shear stress ( w ), Wall Shear Stress Gradient (WSSG), time-average wall shear stress ( w *), and time-average Wall Shear Stress Gradient WSSG *. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

16.
Although left ventricular assist devices (LVADs) have had success in supporting severe heart failure patients, thrombus formation within these devices still limits their long term use. Research has shown that thrombosis in the Penn State pulsatile LVAD, on a polyurethane blood sac, is largely a function of the underlying fluid mechanics and may be correlated to wall shear rates below 500 s(-1). Given the large range of heart rate and systolic durations employed, in vivo it is useful to study the fluid mechanics of pulsatile LVADs under these conditions. Particle image velocimetry (PIV) was used to capture planar flow in the pump body of a Penn State 50 cubic centimeters (cc) LVAD for heart rates of 75-150 bpm and respective systolic durations of 38-50%. Shear rates were calculated along the lower device wall with attention given to the uncertainty of the shear rate measurement as a function of pixel magnification. Spatial and temporal shear rate changes associated with data collection frequency were also investigated. The accuracy of the shear rate calculation improved by approximately 40% as the resolution increased from 35 to 12 μm/pixel. In addition, data collection in 10 ms, rather than 50 ms, intervals was found to be preferable. Increasing heart rate and systolic duration showed little change in wall shear rate patterns, with wall shear rate magnitude scaling by approximately the kinematic viscosity divided by the square of the average inlet velocity, which is essentially half the friction coefficient. Changes in in vivo operating conditions strongly influence wall shear rates within our device, and likely play a significant role in thrombus deposition. Refinement of PIV techniques at higher magnifications can be useful in moving towards better prediction of thrombosis in LVADs.  相似文献   

17.
The reactions of rabbit muscle pyruvate kinase with 5′-p-fluorosulfonylbenzoyl adenosine (5′-FSBA) and 5′-p-fluorosulfonylbenzoyl guanosine (5′-FSBG) from pH 7.0 to 8.0 exhibit biphasic inactivation kinetics. These reactions are characterized by three events: a fast reaction yielding partially active enzyme (with 67% of its original activity for the 5′-FSBA reaction and 45% for the 5′-FSBG reaction) which is reactivated by dithiothreitol, and two slower reactions yielding fully inactive enzymes; the product of only one of the two slower reactions is reactivated by dithiothreitol. These reactions are termed fast dithiothreitol-sensitive, slow dithiothreitol-sensitive, and dithiothreitol-insensitive inactivations. The rates of all three phases of the reactions with 5′-FSBA and 5′-FSBG increase as the pH is raised. The 5′-FSBG reaction can be described in terms of initial reaction with a single ionizable group of pKa 7.80, 8.60, and 7.94 for the fast dithiothreitol-sensitive, slow dithiothreitol-sensitive, and dithiothreitol-insensitive reactions, respectively; pH-independent rate constants of 0.173, 0.133, and 0.0165 min?1 are calculated for these three phases of the overall reaction. The pH dependence of the dithiothreitol-insensitive inactivation by 5′-FSBA coincides with that for 5′-FSBG, but the data for the dithiothreitol-sensitive reactions with 5′-FSBA indicate that the reaction in each phase occurs at more than one site over the pH range tested. Differential protection by ligands against inactivation by 5′-FSBA and 5′-FSBG at pH 7.4 and 8.0 indicates that, for the fast dithiothreitol-sensitive reactions, the cysteine residues participating in the two reactions are not identical, although in both cases modification has been attributed to formation of a disulfide. For 5′-FSBA, the partial inactivation appears to result from modification of cysteine residues at the noncatalytic nucleotide site, whereas for 5′-FSBG the inactivation is due to modification within the catalytic metal-nucleotide site. Reaction with 5′-FSBG seems to occur at the same locus for both the fast and slow dithiothreitol-sensitive phases, with the rate difference being ascribable to negative cooperativity among subunits. For the slow dithiothreitol-sensitive inactivation by 5′-FSBA, protection by Mg2+ and by Mg2+ plus ADP suggests that the targets of modification include the active-site cysteine that is modified by 5′-FSBG. The dithiothreitol-insensitive inactivation, shown to be due to reaction of 5′-FSBA with a tyrosine, may result from reaction of both nucleotide analogs with the same residue, although differential protection by the natural ligands suggests that 5′-FSBA and 5′-FSBG bind to two subsites within the active site.  相似文献   

18.
Cysteine bonds are found near the ligand-binding sites of a wide range of microbial adhesive proteins, including the FimH adhesin of Escherichia coli. We show here that removal of the cysteine bond in the mannose-binding domain of FimH did not affect FimH-mannose binding under static or low shear conditions (< or = 0.2 dyne cm(-2)). However, the adhesion level was substantially decreased under increased fluid flow. Under intermediate shear (2 dynes cm(-2)), the ON-rate of bacterial attachment was significantly decreased for disulphide-free mutants. Molecular dynamics simulations demonstrated that the lower ON-rate of cysteine bond-free FimH could be due to destabilization of the mannose-free binding pocket of FimH. In contrast, mutant and wild-type FimH had similar conformation when bound to mannose, explaining their similar binding strength to mannose under intermediate shear. The stabilizing effect of mannose on disulphide-free FimH was also confirmed by protection of the FimH from thermal and chemical inactivation in the presence of mannose. However, this stabilizing effect could not protect the integrity of FimH structure under high shear (> 20 dynes cm(-2)), where lack of the disulphide significantly increased adhesion OFF-rates. Thus, the cysteine bonds in bacterial adhesins could be adapted to enable bacteria to bind target surfaces under increased shear conditions.  相似文献   

19.
Correlation among shear rate measures in vascular flows   总被引:2,自引:0,他引:2  
A variety of shear rate measures have been calculated from hemodynamic data obtained by laser Doppler anemometry in flow-through casts of human aortic bifurcations. Included are measures sensitive to the mean and amplitude of the shear rate, its maximum rate of change, the duration of stasis and flow reversal near the wall, and the unidirectionality of the flow. Many of these measures are highly correlated with one another. This suggests that that it will be difficult to identify from in vivo measurements those aspects of the flow field to which the vessel wall is most sensitive. It may be possible to separate the effects of purely temporal factors (e.g., the duration of flow reversal) from those related to wall shear stress.  相似文献   

20.
Shear stress is an important physical factor that regulates proliferation, migration, and morphogenesis. In particular, the homeostasis of blood vessels is dependent on shear stress. To mimic this process ex vivo, efforts have been made to seed scaffolds with vascular and other cell types in the presence of growth factors and under pulsatile flow conditions. However, the resulting bioreactors lack information on shear stress and flow distributions within the scaffold. Consequently, it is difficult to interpret the effects of shear stress on cell function. Such knowledge would enable researchers to improve upon cell culture protocols. Recent work has focused on optimizing the microstructural parameters of the scaffold to fine tune the shear stress. In this study, we have adopted a different approach whereby flows are redirected throughout the bioreactor along channels patterned in the porous scaffold to yield shear stress distributions that are optimized for uniformity centered on a target value. A topology optimization algorithm coupled to computational fluid dynamics simulations was devised to this end. The channel topology in the porous scaffold was varied using a combination of genetic algorithm and fuzzy logic. The method is validated by experiments using magnetic resonance imaging readouts of the flow field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号