首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphocreatine production catalyzed by a cytosolic fraction from cardiac muscle containing all glycolytic enzymes and creatine kinase in a soluble form has been studied in the presence of creatine, adenine nucleotides and different glycolytic intermediates as substrates. Glycolytic depletion of glucose, fructose 1,6-bis(phosphate) and phosphoenolpyruvate to lactate was coupled to efficient phosphocreatine production. The molar ratio of phosphocreatine to lactate produced was close to 2.0 when fructose 1,6-bis(phosphate) was used as substrate and 1.0 with phosphoenolpyruvate. In these processes the creatine kinase reaction was not the rate-limiting step: the mass action ratio of the creatine kinase reaction was very close to its equilibrium value and the maximal rate of the forward creatine kinase reaction exceeded that of glycolytic flux by about 6-fold when fructose 1,6-bis(phosphate) was used as a substrate. Therefore, the creatine kinase raction was continuously in the state of quasiequilibrium and the efficient synthesis of phosphocreatine observed is a result of constant removal of ADP by the glycolytic system at an almost unchanged level of ATP ([ATP] ? [ADP]), this leading to a continuous shift of the creatine kinase equilibrium position.When phosphocreatine was added initially at concentrations of 5–15 mM the rate of the coupled creatine kinase and glycolytic reactions was very significantly inhibited due to a sharp decrease in the steady-state concentration of ADP. Therefore, under conditions of effective phosphocreatine production in heart mitochondria, which maintain a high phosphocreatine: creatine ratio in the myoplasm in vivo, the glycolytic flux may be suppressed due to limited availability of ADP restricted by the creatine kinase system. The possible physiological role of the control of the glycolytic flux by the creatine kinase system is discussed.  相似文献   

2.
Abstract: A bioluminescent assay based on the firefly luciferase reaction has been used for determination of creatine kinase activity in CSF. Activities as low as 0.1 U/L can be measured. The coefficient of variation at an activity level of 0.3–0.4 U/L was between 5 and 6%. The assay conditions optimized for serum specimens can be used for CSF. The adenylate kinase activity is almost completely inhibited, which simplifies the procedure. The creatine kinase (CK) isoenzyme distribution was obtained using the bioluminescent assay in combination with immunoinhibition or ion exchange chromatography. All specimens contained both MM and BB activity, but no MB was found. The study indicates that the bioluminescent assay is useful in the determination of CK isoenzymes in CSF. The clinical importance of the observed CK levels will be reported in a separate communication.  相似文献   

3.
Efficient ATP generation is required to produce glutathione and NADP. Hence, the generation of ATP was investigated using the glycolytic pathway of yeast. Saccharomyces cerevisiae cells immobilized using polyacrylamide gel generated ATP from adenosine, consuming glucose and converting it to ethanol and carbon dioxide. Under optimal conditions, the ATP-generating activity of immobilized yeast cells was 7.0 μmol h?1 ml?1 gel. A column packed with these immobilized yeast cells was used for continuous ATP generation. The half-life of the column was 19 days at a space velocity of (SV) 0.3 h?1 at 30°C. The properties of glutathione- and NADP-producing reactions coupled with the ATP-generating reaction were investigated. Escherichia coli cells with glutathione synthesizing activity and Brevibacterium ammoniagenes cells with NAD kinase activity were immobilized in a polyacrylamide gel lattice. Under optimal conditions, the immobilized E. coli cells and immobilized B. ammoniagenes cells produced glutathione and NADP at the rates of 2.1 and 0.65 μmol h?1 ml?1 gel, respectively, adding ATP to the reaction mixture. In order to produce glutathione and NADP economically and efficiently, the glutathione- and NADP-producing reactions were finally coupled with the ATP-generating reaction catalysed by immobilized S. cerevisiae cells. To compare the productivities of glutathione and NADP, and to compare the efficiency of ATP utilization for the production of these two compounds, the two reactor systems, co-immobilized cell system and mixed immobilized cell system, were designed. As a result, these two compounds were also found to be produced by these two kinds of reactor systems. Using the data obtained, the feasibility and properties of ATP generation by immobilized yeast cells are discussed in terms of the production of glutathione and NADP.  相似文献   

4.
Since tyrosine-specific protein kinase (TPK) is much less abundant than Ser/Thr-specific kinases in cells, determination of TPK activity in crude cell extracts or column chromatography eluates has been difficult. This is compounded by the absence of a rapid, economical method for the separation of high endogenous protein phosphorylation background from exogenously added tyrosine-containing substrates. We have developed a new solid-phase assay, which provides high sensitivity and efficiency at a low cost for assaying the TPK activity of crude enzyme preparations. This assay utilizes immobilized tyrosine-containing synthetic polymers such as (Glu:Tyr, 4:1)n in polyacrylamide gels. The kinase reaction is started by adding crude enzyme solutions and [tau-32P]ATP-metal ion mixtures into microtiter-size wells made in the gels. After the phosphorylation reaction, the reaction mixtures are removed and the gels are prewashed in water followed by electrophoresis to completely remove free radioactive ATP. 32P incorporation into the immobilized TPK-specific substrate can be detected by autoradiography and quantitated by cutting the gel pieces and counting them with a liquid scintillation counter. The simple, rapid method should facilitate screening of TPK inhibitors and activators as well as examining the substrate specificity of TPKs. Other enzymes, including Ser/Thr-specific protein kinases, can also be analyzed by this technique.  相似文献   

5.
The biological activity of gliotoxin is dependent on the presence of a strained disulfide bond that can react with accessible cysteine residues on proteins. Rabbit muscle creatine kinase contains 4 cysteines per 42-kDa subunit and is active in solution as a dimer. Only Cys-282 has been identified as essential for activity. Modification of this residue results in loss of activity of the enzyme. Treatment of creatine kinase with gliotoxin resulted in a time-dependent loss of activity abrogated in the presence of reducing agents. Activity was restored when the inactivated enzyme was treated with reducing agents. Inactivation of creatine kinase by gliotoxin was accompanied by the formation of a 37-kDa form of the enzyme. This oxidized form of creatine kinase was rapidly reconverted to the 42-kDa species by the addition of reducing agents concomitant with restoration of activity. A 1:1 mixture of the oxidized and reduced monomer forms of creatine kinase as shown on polyacrylamide gel electrophoresis was equivalent to the activity of the fully reduced form of the enzyme consistent with only one reduced monomer of the dimer necessary for complete activity. Conversion of the second monomeric species of the dimer to the oxidized form by gliotoxin correlated with loss of activity. Our data are consistent with gliotoxin inducing the formation of an internal disulfide bond in creatine kinase by initially binding and possibly activating a cysteine residue on the protein, followed by reaction with a second neighboring thiol. The recently published crystal structure of creatine kinase suggests the disulfide is formed between Cys-282 and Cys-73.  相似文献   

6.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

7.
Selected glycolytic enzymes (including phosphoglucose isomerase, aldolase, glyceraldehyde phosphate dehydrogenase, enolase, pyruvate kinase and lactate dehydrogenase), as well as glycogen phosphorylase, creatine kinase, and adenylate kinase, bound to phosphofructokinase immobilized on an agarose gel. The affinity of phosphofructokinase to these various proteins differed, with phosphorylase exhibiting the strongest binding. Binding was reversed either by: (1) elution with high-ionic-strength buffer (0.4 M KCl); (2) the addition of a 5-10 mM concentration of ATP; or (3) high concentrations of fructose 6-phosphate (5 mM).  相似文献   

8.
The effects of components of the transition state analog (creatine, MgADP, planar anion) on the kinetics and conformation of creatine kinase isozyme BB from monkey brain was studied. From analysis of the reaction time course using the pH stat assay, it was shown that during accumulation of the reaction products (ADP and creatine phosphate), among several anions added, nitrate proved the most effective in inhibiting catalytic activity. Maximum inhibition (77%) was achieved with 50 mM nitrate. The Km for ATP was 0.48 mM and in the presence of 2.5 mM nitrate, 2.2 mM; for ATP in the presence of the dead-end complex, creatine and ADP, the apparent Km was 2.0 mM and the Ki was 0.16 mM; in the presence of the transition state analog, MgADP + NO3- + creatine, the Ki was estimated to be 0.04 mM. Ultraviolet difference spectra of creatine kinase revealed significant differences only in the presence of the complete mixture of the components of the transition state analog. Comparison of gel filtration elution profiles for creatine kinase in the absence and presence of the complete mixture of components of the transition state analog did not reveal any differences in elution volume. Addition of components of the transition state analog to creatine kinase resulted in only a marginal change in intrinsic fluorescence. The presence of the components of the transition state analog increased the rate of reactivity of the enzyme with trinitrobenzenesulfonic acid from k = 6.06 +/- 0.05 M-1 min-1 to 6.96 +/- 0.11 M-1 min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A procedure for purifying creatine kinase from bovine heart mitochondria, including enzyme extraction from mitochondria with salt solutions, concentration on cellulose phosphate gel and gel filtration on Sephacryl S-300 has been developed. Using ultracentrifugation in a sucrose density gradient and gel filtration, it was demonstrated that mitochondrial creatine kinase is present in solution as a mixture of two main forms, i. e., an octamer and a dimer. The distribution of the oligomeric forms is not influenced by changes in the ionic strength from 0.02 to 0.25, temperature (5-20 degrees C), freezing-thawing and the nature of monovalent anions (Cl-, NO3-, CH3COO-) and cations (Na+, K+) present in the medium. At pH 6.0, the predominant form is the octamer; an increase in pH induces its dissociation. An equilibrious mixture of the creatine kinase reaction substrates in the presence of Mg2+ also causes octamer dissociation; no dissociation is observed in the absence of Mg2+ or in the presence of one of the substrates. The non-working couple of substrates, Mg-ADP and creatine, causes dissociation of the octamer in the presence of Cl-, but not of CH3COO-. It is assumed that the dissociating effect of the substrates is due to conformational changes in the subunits concomitant with the formation of the creatine kinase active center in the course of catalysis. At physiological concentrations of nucleotide substrates, the degree of octamer dissociation depends on pH, creatine phosphate/creatine ratio and Pi. It is assumed that the above factors may regulate the reversible conversion of the octamer into the dimer in vivo.  相似文献   

10.
The course of refolding and reactivation of urea-denatured creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) has been studied in the absence and presence of molecular chaperonin GroEL. The enzyme was denatured in Tris--HCl buffer containing 6 M urea for 1 h. In the refolding studies, the denatured enzyme was diluted 60-fold into the same buffer containing GroEL or not for activity, turbidity, fluorescence measurements and polyacrylamide gel electrophoresis. The results show that the reactivation process is dependent of creatine kinase concentration in the concentration range 2.5--4 microM. The levels of activity recovery decrease with increasing enzyme concentration because of the formation of wrong aggregates. The molecular chaperonin GroEL can bind the refolding intermediate of creatine kinase and thus prevent the formation of wrong aggregates. This intermediate is an inactive dimeric form that is in a conformation resembling the 'molten globule' state.  相似文献   

11.
Three homodimeric creatine kinase isozymes (A2, B2, and C2) of the green sunfish (Lepomis cyanellus) were purified by a combination of affinity chromatography, gel filtration, and preparative starch gel electrophoresis. The final preparations were isozymically pure and were used to elicit antibodies in rabbits. The use of the group-specific adsorbant Blue Sepharose CL-6B (Pharmacia) and specific elution conditions for creatine kinase facilitated purification. Fish creatine kinase isozymes are sensitive to denaturation and cannot be readily purified by procedures routinely used for mammalian creatine kinase isozymes.  相似文献   

12.
3-Phosphoglycerate kinase (ATP:3-phospho-d-glycerate 1-phosphotransferase, EC 2.7.2.3) has been covalently immobilized on a polyacrylamide-type support containing carboxylic groups activated by water-soluble carbodiimide. The activity was 88 units g?1 xerogel. The activity versus pH profile showed a sharper maximum at pH 6.5 in the case of the immobilized enzyme. The immobilized enzyme had a broad apparent optimum temperature range between 40 and 50°C. The apparent Km values of the immobilized 3-phosphoglycerate kinase were lower for both 3-phosphoglycerate and ATP than those of the soluble enzyme. In the case of the immobilized enzyme stabilities were enhanced.  相似文献   

13.
An assay system for creatine kinase using microtiter plates and a plate reader that records absorbancies at 405 nM has been devised. The system is an adaptation of well-established assays that couple creatine kinase with the reactions catalyzed by hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), to give a measurable increase in reduced pyridine nucleotide quantitated by absorbance at 340 nM. Two features of this system are modified for reading at 405 nM: (i) The thioamido derivative of NAD is used because its reduced form exhibits a substantial increase in absorbance at 405 nM, the most commonly available wavelength on microplate readers; and (ii) glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is used because it can reduce either NAD or NADP (unlike most other G6PDH enzymes, which require NADP), thus making it unnecessary to use the more expensive thio-NADP. The rate of thio-NAD reduction is linear with enzyme concentration and time over a 20-fold range of concentrations of purified creatine kinase, and the assay also works well with myogenic cells allowed to grow and differentiate in the 96-well plate in which the assay is performed. This system offers considerable savings in cells, time, and material in studies of muscle cell differentiation, for which creatine kinase levels are frequently measured. It also provides a potential method for the convenient and economical measurement of activities of many other enzymes that can be coupled to reduction of thio-NAD.  相似文献   

14.
Previous studies have suggested that MM creatine kinase is a muscle-specific protein and is not present in adult brain tissue. We have isolated a protein from human brain with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis which is identical to the muscle M creatine kinase isoenzyme subunit at all 30 sequenced amino acid residues and possesses creatine kinase enzymatic activity following nondenaturing agarose-gel electrophoresis. Immunohistochemistry localizes M creatine kinase to discrete areas of adult human brain. Northern blot analysis of both total and poly(A)-selected RNA isolated from brain did not detect M creatine kinase mRNA. However, polymerase chain reaction amplification of cDNA synthesized from human placenta, heart, and brain mRNA detected M creatine kinase message in both heart and brain but not placenta which contains no detectable M creatine kinase protein. N1E115 and NS20Y, mouse neuroblastoma cell lines which have been used as models of neural cell differentiation, were found also to express MM creatine kinase. Moreover, a transiently transfected reporter gene with 4,800 base pairs of M creatine kinase upstream region fused to chloramphenicol acetyltransferase was expressed during differentiation of these neural cell lines. In summary, MM creatine kinase is present in human brain and we suggest the M creatine kinase upstream region is sufficient to modulate M creatine kinase expression in certain neuronal cells and may be regulated independently from other muscle genes.  相似文献   

15.
J A Bittl  J DeLayre  J S Ingwall 《Biochemistry》1987,26(19):6083-6090
Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, we used 31P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for Vmax (23.4 +/- 2.8, 62.4 +/- 4.5, and 224 +/- 16 mM/s) and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude (4.1 +/- 1.2, 5.1 +/- 1.6, and 18.4 +/- 2.4 mM/s for brain, heart, and skeletal muscle, respectively). The isozyme composition varied among the three tissues: greater than 99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation (r2 = 0.98; p less than 0.001). The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, we observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.  相似文献   

16.
Myosin and creatine kinase were co-immobilized onto Immunodyne films to mimic the behaviour of creatine kinase bound to the M-line of myofilaments. The Mg-ATPase activity of bound myosin was studied by a coupled enzymatic assay, which detects Mg-ADP in the bulk solution by means of pyruvate kinase and lactate dehydrogenase. The competition for Mg-ADP between pyruvate kinase and creatine kinase either free in solution or co-immobilized with myosin was studied at various creatine phosphate concentrations. Bound creatine kinase competed efficiently when present in very low amounts, corresponding to an activity ratio higher than 1:20,000 between creatine kinase and pyruvate kinase and a molar ratio higher than 1:1000 between creatine kinase and myosin. The Mg-ADP produced by myosin ATPase in the vicinity of the film did not diffuse into the bulk solution but, in the presence of creatine phosphate, was recycled into Mg-ATP by the neighbouring creatine kinase. The existence of an unstirred layer near the surface of the film is sufficient to explain the channeling of ADP (or ATP) between co-immobilized myosin and creatine kinase, without direct interaction or 'intimate coupling' between the enzymes. The problem now is to determine the importance of this kind of facilitated diffusion in the myofilaments in vivo.  相似文献   

17.
A convenient and economical method of NADH production from NAD+ has been established using a formate dehydrogenase system involving immobilized cells of a methanol-utilizing bacterium. Arthrobacter sp, KM62. Four kinds of cell entrapment were studied. An immobilized cell preparation showing a high NADH production activity was obtained by entrapment in a kappa-carrageenan gel lattice. The NADH-producing activity of the immobilized cells was investigated under various conditions. The NADH-producing activity was evoked on the addition of Triton X-100 to the reaction mixture. The conditions for the continuous production of NADH with an immobilized cell column were also investigated. When a reaction mixture containing 10 mumol (6.63 mg) ml-1 NAD+ was passed through the column (1.2 x 20 cm) containing 1.62 g (as dry weight) of immobilized cells, at a space velocity of 0.125 at 35 degrees C, complete conversion was attained.  相似文献   

18.
ATP-dependent calcium sequestration was previously localized in vesicles of mitotic apparatus isolated from sea urchins. We now demonstrate that the mitotic apparatus contains an ATP-regenerative system characterized as creatine kinase (EC 2.7.3.2). Mitotic apparatus isolated with vesicles intact converted ADP to ATP if phosphocreatine was present. Omission of ADP or phosphocreatine gave negligible ATP. When mitotic apparatus were washed with detergent-containing buffer to remove vesicles, their ability to produce ATP from ADP and phosphocreatine was reduced. Assays of creatine kinase activity using NADP+:glucose-6-phosphate dehydrogenase indicated that 70% of the creatine kinase activity was extractable with 0.5% Triton X-100. The insoluble residue containing the skeleton of the mitotic apparatus had the rest of the activity. Experiments with a luciferin/luciferase assay showed that Triton removed above 82% of the activity. Preparations of intact mitotic apparatus were free of cytochrome c oxidase (EC 1.9.3.1) activity and therefore free of mitochondria. About 10(8) mitotic apparatus (total volume about 1 liter) could produce 17 mmol of ATP/min when substrates were not limiting. The creatine kinase enzyme activity described herein and the previously described membrane vesicular calcium sequestration system are nonmitochondrial, integral constituents of the sea urchin mitotic apparatus.  相似文献   

19.
An immunoaffinity immobilized enzyme assay for neomycin phosphotransferase II (NPT II) has been developed. This method combines affinity purification with an enzyme-catalyzed reaction. The assay is mechanically simple and can be semiautomatable since all steps are performed in a microtiter plate. An immunoaffinity step separates NPT II from endogenous kinases, which may produce false positive results, and from endogenous phosphatases and inhibitors, which decrease the apparent NPT activity. This method thus exploits two modes of specificity: antigen-antibody specificity and enzyme catalysis specificity. This gives a high degree of specificity and allows quantitation of 0.1 ppm NPT in crude plant protein extracts. The catalytic ability of the NPT is not significantly hampered by its attachment to the gel, in the Km values for ATP and neomycin and the catalytic number for immobilized NPT are comparable to those for the NPT in solution.  相似文献   

20.
To examine the role of changes in the distribution of the creatine kinase (CK) isoenzymes [BB, MB, MM, and mitochondrial CK (mito-CK)] on the creatine kinase reaction velocity in the intact heart, we measured the creatine kinase reaction velocity and substrate concentrations in hearts from neonatal rabbits at different stages of development. Between 3 and 18 days postpartum, total creatine kinase activity did not change, but the isoenzyme distribution and total creatine content changed. Hearts containing 0, 4, or 9% mito-CK activity were studied at three levels of cardiac performance: KCl arrest and Langendorff and isovolumic beating. The creatine kinase reaction velocity in the direction of MgATP production was measured with 31P magnetization transfer under steady-state conditions. Substrate concentrations were measured with 31P NMR (ATP and creatine phosphate) and conventional biochemical analysis (creatine) or estimated (ADP) by assuming creatine kinase equilibrium. The rate of ATP synthesis by oxidative phosphorylation was estimated with oxygen consumption measurements. These results define three relationships. First, the creatine kinase reaction velocity increased as mito-CK activity increased, suggesting that isoenzyme localization can alter reaction velocity. Second, the reaction velocity increased as the rate of ATP synthesis increased. Third, as predicted by the rate equation, reaction velocity increased with the 3-fold increase in creatine and creatine phosphate contents that occurred during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号