首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu CH  Ying DJ  Mi JH  Zhu XH  Sun JS  Cui XP 《Biorheology》2004,41(2):127-137
In regions of a vessel that experience low shear stress and reversing flow patterns, early features in the pathogenesis of atherosclerosis include the accumulation of oxidized LDL (OxLDL) and adhesion of monocytes to endothelial cells (EC). Here we investigated the hypothesis that low shear stress (2 dyn/cm2) and OxLDL are synergistic for enhanced expression of vascular cell adhesion molecule (VCAM-1) and human aortic endothelial cell (HAEC)-monocyte adhesion. This study shows low shear stress can significantly reduce IkappaBalpha levels, activate NF-kappaB, increase the expression of VCAM-1 in HAEC and binding of monocytes. OxLDL itself cannot significantly increase the expression of VCAM-1 in HAEC and binding of monocytes, but through activation of NF-kappaB and degradation of IkappaBalpha induced by low shear stress it can significantly enhance VCAM-1 expression and monocyte adhesion, over that in unmodified LDL or control. These results suggest that low shear stress can regulate monocyte adhesion to oxidized lipid-induced endothelial cells via an IkappaBalpha-dependent pathway, and that low shear stress together with OxLDL may likely play an important role in atherogenesis.  相似文献   

2.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its cardioprotective effects are not completely understood. Because TNF-alpha-induced endothelial activation and vascular inflammation play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits TNF-alpha-induced signal transduction in human coronary arterial endothelial cells (HCAECs). We found that TNF-alpha significantly increased adhesiveness of the monocytic THP-1 cells to HCAECs, an effect that could be inhibited by pretreatment with resveratrol and the NF-kappaB inhibitor pyrrolidine dithiocarbamate. Previously, we found that TNF-alpha activates NAD(P)H oxidases, and our recent data showed that TNF-alpha-induced endothelial activation was prevented by the NAD(P)H oxidase inhibitor apocynin or catalase plus SOD. Resveratrol also inhibited H(2)O(2)-induced monocyte adhesiveness. Using a reporter gene assay, we found that, in HCAECs, TNF-alpha significantly increased NF-kappaB activity, which could be inhibited by resveratrol (>50% inhibition at 10(-6) mol/l) and pyrrolidine dithiocarbamate. Resveratrol also inhibited TNF-alpha-induced, NF-kappaB-driven luciferase expression in rat aortas electroporated with the reporter gene construct. In TNF-alpha-treated HCAECs, resveratrol (in the submicromolar range) significantly attenuated expression of NF-kappaB-dependent inflammatory markers inducible nitric oxide synthase, IL-6, bone morphogenetic protein-2, ICAM-1, and VCAM. Thus resveratrol at nutritionally relevant concentrations inhibits TNF-alpha-induced NF-kappaB activation and inflammatory gene expression and attenuates monocyte adhesiveness to HCAECs. We propose that these anti-inflammatory actions of resveratrol are responsible, at least in part, for its cardioprotective effects.  相似文献   

3.
The oxidation theory proposes that LDL oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis in triggering inflammation. In contrast to the copper-modified LDL, there are few studies using myeloperoxidase-modified LDL (Mox-LDL) as an inflammation inducer. Our aim is to test whether Mox-LDL could constitute a specific inducer of the inflammatory response. Albumin, which is the most abundant protein in plasma and which is present to an identical concentration of LDL in the intima, was used for comparison. The secretion of IL-8 by endothelial cells (Ea.hy926) and TNF-alpha by monocytes (THP-1) was measured in the cell medium after exposure of these cells to native LDL, native albumin, Mox-LDL, or Mox-albumin. We observed that Mox-LDL induced a 1.5- and 2-fold increase (ANOVA; P < 0.001) in IL-8 production at 100 microg/mL and 200 microg/mL, respectively. The incubation of THP-1 cells with Mox-LDL (100 microg/mL) increased the production of TNF-alpha 2-fold over the control. Native LDL, albumin, and Mox-albumin showed no effect in either cellular types. The myeloperoxidase-modified LDL increase in cytokine release by endothelial and monocyte cells and by firing both local and systemic inflammation could induce atherogenesis and its development.  相似文献   

4.
The vicious cycle between hyperinsulinemia and insulin resistance results in the progression of atherosclerosis in the vessel wall. The complex interaction between hyperglycemia and lipoprotein abnormalities promotes the development of atherogenesis. In the early phase of atherosclerosis, macrophage-derived foam cells play an important role in vascular remodeling. Mechanistic target of rapamycin (mTOR) signaling pathway has been identified to play an essential role in the initiation, progression, and complication of atherosclerosis. Recently sestrin2, an antioxidant, was shown to modulate TOR activity and thereby regulating glucose and lipid metabolism. But the role of sestrin2 in monocyte activation is still not clearly understood. Hence, this study is focussed on investigating the role of sestrin2 in monocyte activation under hyperglycemic and dyslipidemic conditions. High-glucose and oxidized low-density lipoprotein (LDL) treatments mediated proinflammatory cytokine production (M1) with a concomitant decrease in the anti-inflammatory cytokine (M2) levels in human monocytic THP1 cells. Both glucose and oxidized LDL (OxLDL) in a dose and time-dependent manner increased the mTOR activation with a marked reduction in the levels of pAMPK and sestrin2 expression. Both high-glucose and OxLDL treatment increased foam cell formation and adhesion of THP1 cells to endothelial cells. Experiments employing activator or inhibitor of adenosine monophosphate kinase (AMPK) as well as overexpression or silencing of sestrin2 indicated that high-glucose mediated monocyte polarization and adhesion of monocytes to the endothelial cells were appeared to be programmed via sestrin2-AMPK-mTOR nexus. Our results evidently suggest that sestrin2 plays a major role in regulating monocyte activation via the AMPK–mTOR-pathway under diabetic and dyslipidemic conditions and also AMPK regulates sestrin2 in a feedback mechanism.  相似文献   

5.

Background

The association between intravenous (IV) iron administration and outcomes in hemodialysis (HD) patients is still debated. Therefore, this study was aimed to assess the relationship between the IV administration of ferric chloride hexahydrate (Atofen®) and cardiovascular (CV) outcome and the interaction between iron-induced oxidative stress and endothelial dysfunction in chronic HD patients.

Methodology/Principal Findings

A cohort of 1239 chronic HD patients was recruited. In a follow-up of 12 months, Kaplan-Meier survival curves showed that higher doses of IV Atofen associated with higher risks for CV events and deaths in HD patients. In multivariate Cox models, compared to no iron supplementation, IV Atofen administration was an independent predictor for CV events and overall mortality. However, the nature of the observational cohort study possibly bears selection bias. We further found that IV Atofen enhanced the superoxide production of mononuclear cells (MNCs), the levels of circulating soluble adhesion molecules, and the adhesion of MNCs to human aortic endothelial cells (HAECs). In vitro experiments showed that Atofen increased the expression of intracellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 in HAECs and aggravated the endothelial adhesiveness in a dose-dependent manner. These iron-induced changes were significantly attenuated by the co-treatment of HAECs with N-acetylcysteine and inhibitors of NADPH oxidase, nuclear factor κB, and activator protein-1.

Conclusion

A cumulative dose of IV Atofen >800 mg within 6 months was associated with an adverse CV outcome and a higher mortality among chronic HD patients. The detrimental effects of IV iron supplementation were partly due to the increased oxidative stress and induction of MNC adhesion to endothelial cells, a pivotal index of early atherogenesis.  相似文献   

6.
There is accumulating evidence that LDL oxidation is essential for atherogenesis and antioxidants that prevent oxidation may either decelerate or reduce atherogenesis. Current study focused on the effect and mechanism of 3′,4′-dihydroxy-5,6,7,8-tetramethoxyflavone (DTF), a major metabolite of nobiletin (NOB, a citrus polymethoxylated flavone) on atherogenesis. We found DTF had stronger inhibitory activity than α-tocopherol on inhibiting Cu2+-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. Monocyte-to-macrophage differentiation plays a vital role in early atherogenesis. DTF (10–20 μM) dose-dependently attenuated differentiation along with the reduced gene expression of scavenger receptors, CD36 and SR-A, in both PMA- and oxidized low-density lipoprotein (oxLDL)-stimulated THP-1 monocytes. Furthermore, DTF treatment of monocytes and macrophages led to reduction of fluorescent DiI-acLDL and DiI-oxLDL uptake. In conclusion, at least three mechanisms are at work in parallel: DTF reduces LDL oxidation, attenuates monocyte differentiation into macrophage and blunts uptake of modified LDL by macrophage. The effect is different from that of NOB, from which DTF is derived. This study thus significantly enhanced our understanding on how DTF may be beneficial against atherogenesis.  相似文献   

7.
Exercise significantly influences the progression of atherosclerosis. Oxidized LDL (ox-LDL), as a stimulator of oxidative stress, facilitates monocyte-related atherogenesis. This study investigates how exercise intensity impacts ox-LDL-mediated redox status of monocytes. Twenty-five sedentary healthy men exercised mildly, moderately, and heavily (i.e., 40, 60, and 80% maximal oxygen consumption, respectively) on a bicycle ergometer. Reactive oxygen species (ROS) production, cytosolic and mitochondrial superoxide dismutase (c-SOD and m-SOD, respectively) activities, and total and reduced-form gamma-glutamylcysteinyl glycine (t-GSH and r-GSH, respectively) contents in monocytes mediated by ox-LDL were measured. This experiment obtained the following findings: 1) ox-LDL increased monocyte ROS production and was accompanied by decreased c-SOD and m-SOD activities, as well as t-GSH and r-GSH contents, whereas treating monocytes with diphenyleneiodonium (DPI) (a NADPH oxidase inhibitor) or rotenone/2-thenoyltrifluoroacetone (TTFA) (mitochondrial complex I/II inhibitors) hindered ox-LDL-induced monocyte ROS production; 2) production of ROS and reduction of m-SOD activity and r-GSH content in monocyte by ox-LDL were enhanced by heavy exercise and depressed by mild and moderate exercise; and 3) heavy exercise augmented the inhibition of ox-LDL-induced monocyte ROS production by DPI and rotenone/TTFA, whereas these DPI- and rotenone/TTFA-mediated monocyte ROS productions were unchanged in response to mild and moderate exercise. We conclude that heavy exercise increases ox-LDL-induced monocyte ROS production, possibly by decreasing m-SOD activity and r-GSH content in monocytes. However, mild and moderate exercise likely protects individuals against suppression of anti-oxidative capacity of monocyte by ox-LDL.  相似文献   

8.
This study was conducted to examine the role of lectin‐like oxidized low‐density lipoprotein receptor‐1 (LOX‐1) in monocyte adhesion‐induced redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in endothelial cells (ECs). LOX‐1 was blocked by an antibody‐neutralizing LOX‐1 TS92 or small interfering RNA. In cultured human aortic ECs, monocyte adhesion activated Rac1 and p47phox, and increased NADPH oxidase activity and reactive oxygen species (ROS) generation within 30 min and NF‐κB phosphorylation within 1 h, resulting in redox‐sensitive gene expression. Akt and eNOS phosphorylation was induced 15 min after adding monocytes and returned to control level after 30 min, whereas NO production was not altered by monocyte adhesion. Blockade of LOX‐1 blunted the monocyte adhesion‐triggered redox‐sensitive signaling pathway and Akt/eNOS phosphorylation in ECs. Both endothelial intracellular Ca2+ mobilization and Ca2+ influx caused by monocyte attachment were markedly attenuated by pretreatment of ECs with TS92. This suggests that LOX‐1 is involved in redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of oxidized low‐density lipoprotein (ox‐LDL). Furthermore, blockade of Ca2+ inhibited monocyte adhesion‐triggered Rac1 and p47phox activation and ROS generation in ECs, whereas Ca2+ signaling was suppressed by blockade of NADPH oxidase and ROS generation. Finally, TS92 blocked the monocyte adhesion to ECs stimulated with or without tumor necrosis factor‐α or ox‐LDL. We provide evidence that LOX‐1 plays a role in redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of the ox‐LDL–LOX‐1 axis. J. Cell. Physiol. 220: 706–715, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Cardiovascular disease is one of the leading causes of death in the elderly, and novel therapeutic targets against atherogenesis are urgent. The initiation of atherosclerotic changes of monocyte adhesion on the vascular endothelium and subsequent foam cell formation are noteworthy pathophysiologies when searching for strategies to prevent the progression of age-related atherosclerosis. We report the significance of the deubiquitinating enzyme cylindromatosis (CYLD) in vascular remodeling by interference with inflammatory responses regulated by NF-κB signaling. The purpose of this study was to elucidate the pathological functions of CYLD in the early phase of atherogenesis associated with aging.Treatment with inflammatory cytokines induced endogenous CYLD in aortic endothelial cells (HAECs) and THP-1?cells. siRNA-mediated CYLD silencing led to enhanced monocyte adhesion along with increased adhesion molecules in HAECs treated with TNFα. In siRNA-mediated CYLD silenced RAW 264.7 macrophages treated with oxidized LDL (oxLDL), augmented lipid accumulation was observed, along with increased expression of the class A macrophage scavenger receptor (SR-A), lectin-like oxidized LDL receptor-1 (LOX-1), CD36, fatty acid binding protein 4 (FABP4), the cholesterol ester synthase acyl-CoA cholesterol acyltransferase (ACAT1), MCP-1, and IL-1β and decreased expression of scavenger receptor class B type I (SR-BI). Intriguingly, CYLD gene expression was significantly reduced in bone marrow-derived macrophages of aged mice compared that of young mice, as well as in senescent HAECs compared with young cells.These findings suggest that age-related attenuation of CYLD expression in endothelial cells (ECs) and macrophages triggers the initiation of age-related atherogenesis by exacerbating monocyte adhesion on the endothelium and foam cell formation. CYLD in the vasculature may be a novel therapeutic target, especially in the early preventive intervention against the initiation of age-related atherogenesis.  相似文献   

10.
Electronegative low-density lipoprotein   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: The occurrence in blood of an electronegatively charged LDL was described in 1988. During the 1990s reports studying electronegative LDL (LDL(-)) were scant and its atherogenic role controversial. Nevertheless, recent reports have provided new evidence on a putative atherogenic role of LDL(-). This review focuses on and discusses these new findings. RECENT FINDINGS: In recent years, LDL(-) has been found to be involved in several atherogenic features through its action on cultured endothelial cells. LDL(-) induces the production of chemokines, such as IL-8 and monocyte chemotactic protein 1, and increases tumor necrosis factor-alpha-induced production of vascular cell adhesion molecule 1, with these molecules being involved in early phases of leukocyte recruitment. LDL(-) from familial hypercholesterolemic patients also decreases DNA synthesis and intracellular fibroblast growth factor 2 production, which may contribute to impaired angiogenesis and increased apoptosis. In addition, the preferential association of platelet-activating factor acetylhydrolase with LDL(-) has been reported, suggesting a proinflammatory role of this enzyme in LDL(-). SUMMARY: Recent findings suggest that LDL(-) could contribute to atherogenesis via several mechanisms, including proinflammatory, proapoptotic and anti-angiogenesis properties. Further studies are required to define the role of LDL(-) in atherogenesis more precisely and to clarify mechanisms involved in endothelial cell activation.  相似文献   

11.
12.
13.
Alpha-tocopherol supplementation is reported to protect against cardiovascular disease and to influence cells involved in atherogenesis, such as monocytes. Interactions between monocytes and vascular endothelial cells occur early in atherogenesis, and adhesion is mediated by integrins. We evaluated the effects of alpha-tocopherol on expression of Mac-1 (CD11b/CD18) by monocytes after stimulation with oxidized low-density lipoprotein (LDL), which is implicated as a potent chemotactic agent in atherogenesis. Incubation of whole blood with oxidized LDL (100 microg/ml) increased Mac-1 expression on monocytes, and preincubation with alpha-tocopherol reduced this upregulation in a concentration dependent manner. In another experiment, whole blood was obtained from healthy adult volunteers after 10 days of alpha-tocopherol administration (600 mg/day) and was incubated with oxidized LDL (100 microg/ml). There was a decrease in the upregulation of Mac-1 compared with that measured before administration. Adherence of oxidized LDL-stimulated monocytes to human umbilical vein endothelial cells was reduced by pretreatment with alpha-tocopherol, and was also inhibited by an anti-CD18 monoclonal antibody. Experiments with protein kinase C inhibitors suggested that reduction of Mac-1 upregulation by alpha-tocopherol was secondary to a decrease of protein kinase C activity. In conclusion, alpha-tocopherol suppressed the upregulation of Mac-1 expression on monocytes by oxidized LDL.  相似文献   

14.
Oxidative stress has been implicated as an important etiologic factor in atherosclerosis and vascular dysfunction. Antioxidants may inhibit atherogenesis and improve vascular function by two different mechanisms. First, lipid-soluble antioxidants present in low-density lipoprotein (LDL), including alpha-tocopherol, and water-soluble antioxidants present in the extracellular fluid of the arterial wall, including ascorbic acid (vitamin C), inhibit LDL oxidation through an LDL-specific antioxidant action. Second, antioxidants present in the cells of the vascular wall decrease cellular production and release of reactive oxygen species (ROS), inhibit endothelial activation (i.e., expression of adhesion molecules and monocyte chemoattractants), and improve the biologic activity of endothelium-derived nitric oxide (EDNO) through a cell- or tissue-specific antioxidant action. alpha-Tocopherol and a number of thiol antioxidants have been shown to decrease adhesion molecule expression and monocyte-endothelial interactions. Vitamin C has been demonstrated to potentiate EDNO activity and normalize vascular function in patients with coronary artery disease and associated risk factors, including hypercholesterolemia, hyperhomocysteinemia, hypertension, diabetes, and smoking.  相似文献   

15.
Coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Mitochondrial dysfunction and increased production of reactive oxygen species (ROS) are associated with diabetes and CAD. Elevated levels of glycated LDL (glyLDL) were detected in patients with diabetes. Our previous studies demonstrated that glyLDL increased the generation of ROS and altered the activities of antioxidant enzymes in vascular endothelial cells (EC). This study examined the effects of glyLDL on oxygen consumption in mitochondria and the activities of key enzymes in the mitochondrial electron transport chain (ETC) in cultured porcine aortic EC. The results demonstrated that glyLDL treatment significantly impaired oxygen consumption in Complexes I, II/III, and IV of the mitochondrial ETC in EC compared to LDL or vehicle control detected using oxygraphy. Incubation with glyLDL significantly reduced the mitochondrial membrane potential, the NAD+/NADH ratio, and the activities of mitochondrial ETC enzymes (NADH-ubiquinone dehydrogenase, succinate cytochrome c reductase, ubiquinone cytochrome c reductase, and cytochrome c oxidase) in EC compared to LDL or control. The abundance of mitochondria-associated ROS and the release of ROS from EC were significantly increased after glyLDL treatment. The findings suggest that glyLDL attenuates the activities of key enzymes in the mitochondrial ETC, decreases mitochondrial oxygen consumption, reduces mitochondrial membrane potential, and increases ROS generation in EC, which potentially contribute to mitochondrial dysfunction in diabetic patients.  相似文献   

16.
Previous studies have shown that the aging vascular system undergoes pro-atherogenic phenotypic changes, including increased oxidative stress and a pro-inflammatory shift in endothelial gene expression profile. To elucidate the link between increased oxidative stress and vascular inflammation in aging, we compared the carotid arteries and aortas of young and aged (24 mo old) Fisher 344 rats. In aged vessels there was an increased NF-kappaB activity (assessed by luciferase reporter gene assay and NF-kappaB binding assay), which was attenuated by scavenging H(2)O(2). Aging did not alter the vascular mRNA and protein expression of p65 and p50 subunits of NF-kappaB. In endothelial cells of aged vessels there was an increased production of H(2)O(2) (assessed by 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-acetyl ester fluorescence), which was attenuated by the mitochondrial uncoupler FCCP. In young arteries and cultured endothelial cells, antimycin A plus succinate significantly increased FCCP-sensitive mitochondrial H(2)O(2) generation, which was associated with activation of NF-kappaB. In aged vessels inhibition of NF-kappaB (by pyrrolidenedithiocarbamate, resveratrol) significantly attenuated inflammatory gene expression and inhibited monocyte adhesiveness. Thus increased mitochondrial oxidative stress contributes to endothelial NF-kappaB activation, which contributes to the pro-inflammatory phenotypic alterations in the aged vaculature. Our model predicts that by reducing mitochondrial H(2)O(2) production and/or directly inhibiting NF-kappaB novel anti-aging pharmacological treatments (e.g., calorie restriction mimetics) will exert significant anti-inflammatory and vasoprotective effects.  相似文献   

17.
Impairments in mitochondrial function have been proposed to play an important role in the pathogenesis of diabetes. Atherosclerotic coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Mitochondrial dysfunction and increased production of reactive oxygen species (ROS) are associated with diabetes and CAD. Elevated levels of glycated low density lipoproteins (glyLDL) and oxidized LDL (oxLDL) were detected in patients with diabetes. Our previous studies demonstrated that oxLDL and glyLDL increased the generation of ROS and altered the activities of antioxidant enzymes in vascular endothelial cells (EC). The present study examined the effects of glyLDL and oxLDL on mitochondrial respiration, membrane potential and the activities and proteins of key enzymes in mitochondrial electron transport chain (mETC) in cultured porcine aortic EC (PAEC). The results demonstrated that glyLDL or oxLDL significantly reduced oxygen consumption in Complex I, II/III and IV of mETC in PAEC compared to LDL or vehicle control using oxygraphy. Incubation with glyLDL or oxLDL significantly reduced mitochondrial membrane potential, the activities of mitochondrial ETC enzymes - NADH dehydrogenase (Complex I), succinate cytochrome c reductase (Complex II + III), ubiquinol cytochrome c reductase (Complex III), and cytochrome c oxidase (Complex IV) in PAEC compared to LDL or control. Treatment with oxLDL or glyLDL reduced the abundance of subunits of Complex I, ND1 and ND6 in PAEC. However, the effects of oxLDL on mitochondrial activity and proteins were not significantly different from glyLDL. The findings suggest that the glyLDL or oxLDL impairs mitochondrial respiration, as a result from the reduction of the abundance of several key enzymes in mitochondria of vascular EC, which potentially may lead to oxidative stress in vascular EC, and the development of diabetic vascular complications.  相似文献   

18.
Enhanced monocyte adhesion to endothelial cells is an early event in atherogenesis. It has been shown that C‐reactive protein (CRP) plays a key role in atherogenesis. Here, we investigated the effects of CRP on monocyte‐endothelial cell adhesion and tested the hypothesis that NADPH oxidase (NOX)‐mediated oxidative stress might play a key role in CRP‐induced monocyte‐endothelial cell adhesion. Firstly, 36 patients with carotid intima‐media thickness (IMT) incrassation and 34 controls were enrolled in this study. The levels of glucose, lipids, CRP, monocyte chemotractant protein (MCP‐1), malondialdehyde (MDA), and protein carbonylation were analyzed. The results showed that carotid IMT was associated with abnormal lipid metabolism, including elevated CRP, triglycerides (TG) (P < 0.01) and decreased high density lipoprotein (HDL) level (P < 0.05). The levels of CRP and MCP‐1 in patients with carotid IMT incrassation were increased compared with the controls (P < 0.01). Moreover, patients with carotid IMT incrassation displayed enhanced MDA and protein carbonylation levels (P < 0.01), accompanied by activation and up‐regulation of NOX in monocytes (P < 0.05) compared with the controls. The monocytes isolated from five healthy donors were used for in vitro experiments. Reactive oxygen species (ROS) production and NOX expression in monocytes were examined. The results also indicated that CRP could promote the adhesion of monocyte‐endothelial cell by up‐regulation of MCP‐1 expression (P < 0.05). Importantly, NFκ B and p38 MAPK signaling pathways, which were activated by NOX‐derived ROS, were involved in CRP‐induced monocyte‐endothelial cell adhesion and up‐regulation of MCP‐1 expression. These data suggested that CRP could promote the adhesion of monocytes to endothelial cells via NOX‐mediated oxidative stress. J. Cell. Biochem. 113: 857–867, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
The infiltration of both monocyte and activated T cells in the skin is one of critical steps in the development of UVB-induced inflammation. Upregulation of adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) on the surface of keratinocytes plays an important role in this process. In this study, we examined the molecular mechanism responsible for UVB-induced expression of ICAM-1 and subsequent monocyte adhesion by keratinocyte. We observed that (1) UVB induced protein and mRNA expression of ICAM-1 in a dose- and time-dependent manner in human keratinocyte cell HaCaT; (2) UVB induced the translocation of NF-kappaB and inhibition of NF-kappaB by NF-kappaB inhibitors suppressed UVB-induced mRNA and protein expression of ICAM-1; (3) UVB increased the intracellular level of reactive oxygen species (ROS) by HaCaT cells; (4) UVB-induced increase of intracellular ROS level was suppressed by pretreatment with diphenyl iodonium (DPI) and N-acetyl cysteine (NAC); and (5) inhibition of UVB-induced ROS production by DPI or NAC suppressed UVB-mediated translocation of NF-kappaB, expression of ICAM-1 and subsequent monocyte adhesion in HaCaT cells. These results suggest that UVB-induced ROS is involved in the translocation of NF-kappaB which is responsible for expression of ICAM-1 and subsequent increased monocyte adhesion in human keratinocyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号