首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   

3.
Despite the use of new generation target specific drugs or combination treatments, drug-resistance caused by defective apoptosis signaling remains a major challenge in cancer treatment. A common apoptotic defect in drug-resistant tumor is the failure of cancer cells to undergo Bax/Bak-dependent mitochondrial permeabilization due to impaired signaling of Bcl-2 family proteins. Therefore, Bax and Bak-independent caspase-activating compounds appear to be effective in killing such tumor cells. An image-based cellular platform of caspase sensors in Bax and Bak deficient background allowed us to identify several potential Bax/Bak-independent caspase-activating compounds from a limited high-throughput compound screening. FRET-based caspase sensor probe targeted at the nucleus enabled accurate and automated segmentation, yielding a Z-value of 0.72. Some of the positive hits showed promising activity against drug-resistant human cancer cells expressing high levels of Bcl-2 or Bcl-xL. Using this approach, we describe thiolutin, CD437 and TPEN as the most potentially valuable drug candidates for addressing drug-resistance caused by aberrant expression of Bcl-2 family proteins in tumor cells. The screen also enables the quantification of multiparameter apoptotic events along with caspase activation in HTS manner in live mode, allowing characterization of non-classical apoptosis signaling.  相似文献   

4.
Curcumin and its chalcone derivatives have well-known, explicit biological antitumor properties, such as instance antiproliferative and apoptotic effects via multiple molecular targets. In this study, we investigated the anticancer activity of curcumin derivative L6H4 (curcumin L6H4) on gastric cancer cells. Inhibitory effects of curcumin L6H4 on gastric cancer cells (BGC-823) were studied by the diphenyltetrazolium (MTT) assay, and cell apoptosis was detected by Annexin-V/propidium iodide (PI) staining and then analyzed by flow cytometry. A mouse xenotransplant gastric tumor model was established to detect the role of curcumin L6H4 in vivo. The apoptosis-related proteins p53, p21, Bax, and Bcl-2 in BGC-823 cells and mouse xenotransplant models treated with curcumin L6H4 were determined by Western blot analysis. Curcumin L6H4 can significantly inhibit the proliferation and induce the apoptosis of BGC-823 cells, thus enhancing the expression levels of p53, p21, Bax, and Bcl-2 noticeably in vivo and in vitro. Meanwhile, curcumin L6H4 can remarkably suppress the growth of tumor cells in animal models. These results suggest that curcumin derivative L6H4 has potent of antitumor properties in vitro or in vivo.  相似文献   

5.
6.
7.
Crohn's disease (CD) is a condition characterized by excessive numbers of activated T cells in the mucosa. We investigated whether a defect in apoptosis could prolong T cell survival and contribute to their accumulation in the mucosa. Apoptotic, Bcl-2+, and Bax+ cells in tissue sections were detected by the TUNEL method and immunohistochemistry. T cell apoptosis was induced by IL-2 deprivation, Fas Ag ligation, and exposure to TNF-alpha and nitric oxide. TUNEL+ leukocytes were few in control, CD, and ulcerative colitis (UC) mucosa, with occasional CD68+ and myeloperoxidase+, but no CD45RO+, apoptotic cells. Compared with control and UC, CD T cells grew remarkably more in response to IL-2 and were significantly more resistant to IL-2 deprivation-induced apoptosis. CD T cells were also more resistant to Fas- and nitric oxide-mediated apoptosis, whereas TNF-alpha failed to induce cell death in all groups. Compared with control, CD mucosa contained similar numbers of Bcl-2+, but fewer Bax+, cells, while UC mucosa contained fewer Bcl-2+, but more Bax+, cells. Hence, the Bcl-2/Bax ratio was significantly higher in CD and lower in UC. These results indicate that CD may represent a disorder where the rate of T cell proliferation exceeds that of cell death. Insufficient T cell apoptosis may interfere with clonal deletion and maintenance of tolerance, and result in inappropriate T cell accumulation contributing to chronic inflammation.  相似文献   

8.
9.
CD4+CD25+ regulatory T cells are involved in the prevention of autoimmune diseases and in tumor-induced tolerance. We previously demonstrated in tumor-bearing rodents that one injection of cyclophosphamide could significantly decrease both numbers and suppressive functions of regulatory T cells, facilitating vaccine-induced tumor rejection. In humans, iterative low dosing of cyclophosphamide, referred to as "metronomic" therapy, has recently been used in patients with advanced chemotherapy resistant cancers with the aim of reducing tumor angiogenesis. Here we show that oral administration of metronomic cyclophosphamide in advanced cancer patients induces a profound and selective reduction of circulating regulatory T cells, associated with a suppression of their inhibitory functions on conventional T cells and NK cells leading to a restoration of peripheral T cell proliferation and innate killing activities. Therefore, metronomic regimen of cyclophosphamide does not only affect tumor angiogenesis but also strongly curtails immunosuppressive regulatory T cells, favoring a better control of tumor progression. Altogether these data support cyclophosphamide regimen as a valuable treatment for reducing tumor-induced immune tolerance before setting to work anticancer immunotherapy.  相似文献   

10.
《Genomics》2020,112(5):3504-3510
We investigated the effect of S-phase kinase-associated protein 2 (SKP2) on radiosensitivity of esophageal cancer (EC) cells. Expression of SKP2, PI3K, AKT, Bcl-2 and Bax were assayed in EC. EC cells were transfected with SKP2-siRNA/IGF-1 to detect expression of SKP2, PI3K, AKT, Bcl-2 and Bax. At last, the radiosensitivity of cells in different doses of X (0, 2, 4, 6, 8 Gy) irradiation and cell apoptosis were also detected. EC cells displayed a higher positive expression rate of SKP2, elevated mRNA and protein expression of SKP2, PI3K, AKT, Bcl-2 and Bax, as well as higher extent of PI3K and AKT phosphorylation. SKP2 silencing downregulated mRNA and protein expression of PI3K, AKT and Bcl-2 but increased p27 protein expression, and inhibited the cell survival rate while promoting cell apoptosis. Taken together, silencing SKP2 can inhibit the PI3K/AKT signaling pathway, thereby increasing the radiosensitivity of EC cells.  相似文献   

11.
Tumor necrosis factor (α)–related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that preferentially kills tumor cells with limited cytotoxicity to nonmalignant cells. However, signaling from death receptors requires amplification via the mitochondrial apoptosis pathway (type II) in the majority of tumor cells. Thus, TRAIL-induced cell death entirely depends on the proapoptotic Bcl-2 family member Bax, which is often lost as a result of epigenetic inactivation or mutations. Consequently, Bax deficiency confers resistance against TRAIL-induced apoptosis. Despite expression of Bak, Bax-deficient cells are resistant to TRAIL-induced apoptosis. In this study, we show that the Bax dependency of TRAIL-induced apoptosis is determined by Mcl-1 but not Bcl-xL. Both are antiapoptotic Bcl-2 family proteins that keep Bak in check. Nevertheless, knockdown of Mcl-1 but not Bcl-xL overcame resistance to TRAIL, CD95/FasL and tumor necrosis factor (α) death receptor ligation in Bax-deficient cells, and enabled TRAIL to activate Bak, indicating that Mcl-1 rather than Bcl-xL is a major target for sensitization of Bax-deficient tumors for death receptor–induced apoptosis via the Bak pathway.  相似文献   

12.
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignant tumor and is refractory to conventional chemotherapy. The aim of this study is therefore to elucidate the mechanism of chemoresistance in ICC which is not fully understood. We generated cisplatin resistant ICC cells via long term exposure to cisplatin and found that these cells are also resistant to 5-fluorouracil (5-FU) and gemcitabine. The chemoresistant cells showed enhanced Bcl-2 expression and reduced Bax expression compared to parental ICC cells. In addition, the resistant cells showed enhanced activation of AKT and extracellular signal-regulated kinase (ERK) 1/2. Inhibition of AKT activation by phosphoinocitide 3-kinase (PI3K) inhibitor LY294002 resulted in reduced Bcl-2 expression and enhanced Bax expression and thus induced apoptosis in the resistant cells, whereas inhibition of ERK1/2 activation by mitogen-activated protein kinase (MEK) inhibitor U0126 did not induce apoptosis without affecting the expression of Bcl-2 and Bax but decreased cell growth. Moreover, the inhibition of AKT or ERK1/2 sensitized the resistant cells to cisplatin and therefore resulted in greatly enhanced cisplatin-induced apoptosis and growth inhibition in the cells. The results indicate that AKT and ERK1/2 signaling mediate chemoresistance in the cells and could be important therapeutic targets for overcoming chemoresistance in ICC.  相似文献   

13.
In the present study, we aimed to demonstrate that CD4 may represent a critical turning point that governs the apoptotic and survival programs in T cells, without modifying the physical association with the TCR-CD3 complex. To address this issue, we have explored the possibility that the activation of CD4 may transduce apoptotic signals unless signaling effectors neutralize them. Our data show that in Jurkat T cells CD4 engagement by Leu3a mAb results in a rapid and strong increase of Lck kinase activity, subsequent alterations of mitochondrial membrane potential, and apoptosis. Critical parameters are coassociation of CD4/Lck with TCR/CD3 and up-regulation of the proapoptotic protein Bax. Indeed, Leu3a-mediated Lck activation failed to induce apoptotic features in Jurkat cells either defective for TCR/CD3 or overexpressing the antiapoptotic protein Bcl-2. Furthermore, we demonstrate that Leu3a treatment of Jurkat cells overexpressing Vav results in the inhibition of mitochondrial damage and apoptosis; this rescue effect is accompanied with a significant decrease of Bax expression observed in apoptotic cells. Our evidence that the activation of Lck activates in T cells apoptotic pathways which are counteracted by Vav, a signaling molecule that cooperates with CD28 to boost TCR signals, suggests a novel role for costimulation in protecting T cells from CD4-mediated cell death.  相似文献   

14.
Curcumin, the active ingredient from the spice turmeric (Curcuma longa Linn), is a potent antioxidant and anti-inflammatory agent. It has been recently demonstrated to possess discrete chemopreventive activities. However, the molecular mechanisms underlying such anticancer properties of curcumin still remain unrealized, although it has been postulated that induction of apoptosis in cancer cells might be a probable explanation. In the current study, curcumin was found to decrease the Ehrlich's ascites carcinoma (EAC) cell number by the induction of apoptosis in the tumor cells as evident from flow-cytometric analysis of cell cycle phase distribution of nuclear DNA and oligonucleosomal fragmentation. Probing further into the molecular signals leading to apoptosis of EAC cells, we observed that curcumin is causing tumor cell death by the up-regulation of the proto-oncoprotein Bax, release of cytochrome c from the mitochondria, and activation of caspase-3. The status of Bcl-2 remains unchanged in EAC, which would signify that curcumin is bypassing the Bcl-2 checkpoint and overriding its protective effect on apoptosis.  相似文献   

15.
目的:研究姜黄素调控Keap1-Nrf2-ARE信号通路缓解大鼠过度训练所致脾脏氧化应激及细胞凋亡机制。方法:7周龄SPF级雄性Wistar大鼠分为对照组(C组,n=12)、过度训练组(OM组,n=11)、姜黄素+过度训练组(COM组,n=14)。C组不进行任何运动干预,OM组、COM组大鼠进行8周递增负荷游泳训练。训练期间,COM组以200 mg/(kg·d)、5 ml/kg姜黄素进行灌胃,其他组灌胃等体积0.5 %羧甲基纤维素纳助溶剂。末次训练后24 h,称重计算脾脏指数,光镜观察脾脏组织病理学改变,取血液、脾脏组织检测相关生化指标。结果:C组大鼠脾脏组织结构正常;OM组较C组脾脏指数极显著降低(P<0.01),并出现明显病理学改变;COM组较OM组脾脏指数显著升高(P<0.05),且组织形态学改变有所改善。与C组比较,OM组血清皮质酮(Cor)浓度和脾脏细胞凋亡水平、丙二醛(MDA)浓度均升高,促凋亡蛋白Bcl-2相关X蛋白(Bax)表达增强(P<0.05或P<0.01);体重、血清睾酮(T)水平及脾脏超氧化物歧化酶(SOD)活性降低,脾脏血红素氧合酶1(HO-1)、抗凋亡蛋白B淋巴细胞瘤因子-2(Bcl-2)表达减弱(P<0.05或P<0.01);脾脏核因子E2相关因子2(Nrf2)表达水平无显著变化(P>0.05)。与OM组比较,COM组体重无显著变化(P>0.05);血清T浓度升高,脾脏SOD活性升高,Bcl-2、Nrf2和HO-1表达增强(P<0.05或P<0.01);血清Cor浓度及脾脏MDA浓度、细胞凋亡水平、Bax表达均降低或减弱(P<0.05或P<0.01);组间T/Cor比值变化趋势与T变化相一致,Bcl-2/Bax比值变化趋势与Bcl-2变化相一致。结论:8周递增负荷过度游泳训练引发脾脏细胞凋亡加剧,脾脏组织发生病理改变及功能异常。姜黄素通过上调Nrf2、HO-1蛋白表达,在一定程度上缓解过度训练引发的氧化应激,增强抑凋亡蛋白Bcl-2表达,减弱促凋亡蛋白Bax表达,改善大鼠脾脏细胞过度凋亡,保护脾脏组织结构和功能正常。  相似文献   

16.
Vishvakarma NK  Singh SM 《Biochimie》2011,93(10):1786-1796
Proton pump inhibitors (PPI) are being proposed as potent antitumor agents, owing to their ability to specifically induce tumor cell death by reversing H+ ion homeostasis. As tumor growth induces myelosuppression in tumor-bearing hosts, it remains unclear if PPI can also modulate tumor-induced myelosuppression. Thus, we studied the effect of in vivo administration of pantoprazole (PPZ), a PPI, on myelopoiesis in a murine model of a transplantable T cell lymphoma, designated as Dalton’s lymphoma (DL). Intraperitoneal administration of PPZ to tumor-bearing mice resulted in an enhanced bone marrow cellularity, inhibited induction of apoptosis and augmented bone marrow cell (BMC) survival. BMC of PPZ-administered tumor-bearing mice showed elevated number of F4/80 positive cells, augmented colony forming ability and differentiation in bone marrow-derived macrophages (BMDM) with higher expression of F4/80 and CD11c markers. This study also presents evidences to indicate that PPZ-dependent augmentation of myelopoiesis in the tumor-bearing host is dependent on an enhanced expression of M-CSF and receptors for M-CSF & GM-CSF in BMC, along with a modulation in the expression of cell survival regulatory molecules PUMA, Bcl2, p53 and caspase-activated DNase (CAD). BMDM obtained from PPZ-administered tumor-bearing mice also showed an augmented expression of TLR-2, tumoricidal activity, production of NO and monokines: IL-1, IL-6 & TNF-α. The study discusses the possible mechanisms underlying PPZ-dependent augmentation of myelopoiesis. Taken together, the present study proposes that a PPZ-dependent alleviation of tumor-induced myelosuppression could contribute to an augmented myelopoiesis.  相似文献   

17.
IL-12 is a macrophage-derived cytokine that induces proliferation, cytokine production, and cytotoxic activity of T and NK cells. Signaling through its receptor, IL-12 induces these cellular responses by tyrosine phosphorylation and activation of Janus kinase-2 (Jak-2), Tyk-2, Stat3, and Stat4. We have used tyrphostin B42 (AG490), a Jak-2 inhibitor, to determine the role of Jak-2 kinase in IL-12 signaling and IL-12-induced T cell functions. Treatment of activated T cells with tyrphostin B42 inhibited the IL-12-induced tyrosine phosphorylation and activation of Jak-2 without affecting Tyk-2 kinase. In contrast, treatment with tyrphostin A1 inhibited the tyrosine phosphorylation of Tyk-2 but not that of Jak-2 kinase. Inhibition of either Jak-2 or Tyk-2 leads to a decrease in the IL-12-induced tyrosine phosphorylation of Stat3, but not of Stat4, protein. While inhibition of Jak-2 lead to programmed cell death, the inhibition of Jak-2 or Tyk-2 resulted a decrease in IFN-gamma production. We have further tested the in vivo effects of tyrphostin B42 in experimental allergic encephalomyelitis, a Th1 cell-mediated autoimmune disease. In vivo treatment with tyrphostin B42 decreased the proliferation and IFN-gamma production of neural Ag-specific T cells. Treatment of mice with tyrphostin B42 also reduced the incidence and severity of active and passive EAE. These results suggest that tyrphostin B42 prevents EAE by inhibiting IL-12 signaling and IL-12-mediated Th1 differentiation in vivo.  相似文献   

18.
This study was undertaken to determine whether the Bcl-2 family proteins and Smac are regulators of aspirin-mediated apoptosis in a gastric mucosal cell line known as AGS cells. Cells were incubated with varying concentrations of acetylsalicylic acid (ASA; 2-40 mM), with or without preincubation of caspase inhibitors. Apoptosis was characterized by Hoechst staining and DNA-histone-associated complex formation. Antiapoptotic Bcl-2, proapoptotic Bax and Bid, Smac, and cytochrome-c oxidase (COX IV) were analyzed by Western blot analyses from cytosol and mitochondrial fractions. ASA downregulated Bcl-2 protein expression and induced Bax translocation into the mitochondria and cleavage of Bid. In contrast, expression of Smac was significantly decreased in mitochondrial fractions of ASA-treated cells. Bax and Bid involvement in apoptosis regulation was dependent on caspase activation, because caspase-8 inhibition suppressed Bax translocation and Bid processing. Caspase-9 inhibition prevented Smac release from mitochondria. Additionally, increased expression of the oxidative phosphorylation enzyme COX IV was observed in mitochondrial fractions exposed to ASA at concentrations >5 mM. Although caspase-8 inhibition had no effect on aspirin-induced apoptosis and DNA-histone complex formation, caspase-9 inhibition significantly decreased both of these events. We conclude that Bcl-2 protein family members and Smac regulate the apoptotic pathway in a caspase-dependent manner. Our results indicate also that mitochondrial integration and oxidative phosphorylation play a critical role in the pathogenesis of apoptosis in human gastric epithelial cells.  相似文献   

19.
Therapeutic vaccinations used to induce CTLs and treat firmly established tumors are generally ineffective. To understand the mechanisms underlying the failure of therapeutic vaccinations, we investigated the fate of tumor-specific CD8+ T cells in tumor-bearing mice with or without vaccinations. Our data demonstrate that tumor-specific CD8+ T cells are activated at the early stage of tumor growth, tumor-specific CTL response reaches a maximal level during progressive tumor growth, and tumor-specific CD8+ T cells lose cytolytic function at the late stage of tumor growth. The early stage therapeutic vaccination induces efficient antitumor activity by amplifying the CTL response, whereas the late-stage therapeutic vaccination is invalid due to tumor-induced dysfunction of CD8+ T cells. However, at the late stage, tumor-specific CD8+ T cells are still present in the periphery. These tumor-specific CD8+ T cells lose cytolytic activity, but retain IFN-gamma secretion function. In contrast to in vitro cultured tumor cells, in vivo growing tumor cells are more resistant to tumor-specific CTL killing, despite an increase of tumor Ag gene expression. Both tumor-induced CD8+ T cell dysfunction at the late stage and immune evasion developed by in vivo growing tumor cells contribute to an eventual inefficacy of therapeutic vaccinations. Our study suggests that it is important to design a vaccination regimen according to the stages of tumor growth and the functional states of tumor-specific CD8+ T cells.  相似文献   

20.
Anoikis, an apoptosis triggered by loss of cell anchorage, has been shown to be a principal mechanism of inhibition of tumor metastasis. Recently, anti-apoptotic Bcl-2 and Cav-1 proteins have been demonstrated to be highly associated with tumor metastasis and apoptosis resistance. Curcumin, a major active component of turmeric, Curcuma longa, has been shown to inhibit neoplastic evolution and tumor progression; however, the underlying mechanisms are unclear. In this study, we investigated the effect of curcumin on cell anoikis as a possible mechanism of anti-tumorigenic action of curcumin, and evaluated the potential role of Bcl-2 and Cav-1 in this process. Our results showed that ectopic expression of either Bcl-2 or Cav-1 induced anoikis resistance of lung carcinoma H460 cells. Curcumin downregulated Bcl-2 protein during anoikis and sensitized the cells to detachment-induced apoptosis, whereas it had no significant effect on Cav-1 protein expression. Bcl-2 down-regulation as well as anoikis enhancement by curcumin were inhibited by superoxide anion scavenger, Mn(III)tetrakis(4-benzoic acid) porphyrin chloride, but were unaffected by other ROS scavengers including catalase and deferoxamine, suggesting that superoxide anion is a key player in the downregulation of Bcl-2 by curcumin. Furthermore, we provided evidence that curcumin decreased Bcl-2 level through ubiquitin-proteasomal degradation which sensitized cells to detachment-induced apoptosis. These findings indicate a novel pathway for curcumin regulation of Bcl-2 and provide a key mechanism of anoikis regulation that may be exploited for metastatic cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号