首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of oleanolic acid, a plant-derived triterpenoid, on insulin secretion and content in pancreatic beta-cells and rat islets. Oleanolic acid significantly enhanced insulin secretion at basal and stimulatory glucose concentrations in INS-1 832/13 cells and enhanced acute glucose-stimulated insulin secretion in isolated rat islets. In the cell line the effects of oleanolic acid on insulin secretion were comparable to that of the sulfonylurea tolbutamide at basal glucose levels and with the incretin mimetic Exendin-4 under glucose-stimulated conditions, yet neither Ca(2+) nor cAMP rose in response to oleanolic acid. Chronic treatment with oleanolic acid increased total cellular insulin protein and mRNA levels. These effects may contribute to the anti-diabetic properties of this natural product.  相似文献   

2.
TRPM4 is a calcium-activated non-selective cation channel that is widely expressed and proposed to be involved in cell depolarization. In excitable cells, TRPM4 may regulate calcium influx by causing the depolarization that drives the activation of voltage-dependent calcium channels. We here report that insulin-secreting cells of the rat pancreatic beta-cell line INS-1 natively express TRPM4 proteins and generate large depolarizing membrane currents in response to increased intracellular calcium. These currents exhibit the characteristics of TRPM4 and can be suppressed by expressing a dominant negative TRPM4 construct, resulting in significantly decreased insulin secretion in response to a glucose stimulus. Reduced insulin secretion was also observed with arginine vasopressin stimulation, a Gq-coupled receptor agonist in beta-cells. Moreover, the recruitment of TRPM4 currents was biphasic in both INS-1 cells as well as HEK-293 cells overexpressing TRPM4. The first phase is due to activation of TRPM4 channels localized within the plasma membrane followed by a slower secondary phase, which is caused by the recruitment of TRPM4-containing vesicles to the plasma membrane during exocytosis. The secondary phase can be observed during perfusion of cells with increasing [Ca(2+)](i), replicated with agonist stimulation, and coincides with an increase in cell capacitance, loss of FM1-43 dye, and vesicle fusion. Our data suggest that TRPM4 may play a key role in the control of membrane potential and electrical activity of electrically excitable secretory cells and the dynamic translocation of TRPM4 from a vesicular pool to the plasma membrane via Ca(2+)-dependent exocytosis may represent a key short- and midterm regulatory mechanism by which cells regulate electrical activity.  相似文献   

3.
Endoplasmic reticulum (ER) stress-mediated apoptosis plays an important role in the destruction of pancreatic beta-cells and contributes to the development of type 1 diabetes. The chaperone molecule, glucose-regulated proteins 78 (Grp78), is required to maintain ER function during toxic insults. In this study, we investigated the changes of Grp78 expression in different phases of streptozotocin (STZ)-affected beta-cells to explore the relationship between Grp78 and the response of beta-cells to ER stress. An insulinoma cell line (NIT-1) treated with STZ for different time periods and STZ-induced diabetic Balb/C mice at different time points were used as the model system. The level of Grp78 and C/EBP homologous protein (CHOP) mRNA were detected by real-time polymerase chain reaction and their protein by immunoblot. Apoptosis and necrosis was measured by flow cytometry. In addition, the changes of Grp78 protein in STZ-treated nondiabetic mice were also detected by immunoblot. Grp78 expression significantly increased in the early phase but decreased in the later phase of affected beta-cells, while CHOP was induced and apoptosis occurred along with the decrease of Grp78. Interestingly, the Grp78 protein of STZ-treated nondiabetic mice increased stably compared with that of the control. From the results, we can conclude that Grp78 may contribute to the response of beta-cells to ER stress, and more attention should be paid to Grp78 in the improvement of diabetes.  相似文献   

4.
5.
6.
Muller D  Jones PM  Persaud SJ 《FEBS letters》2006,580(30):6977-6980
Insulin and glucose inhibited apoptosis in the MIN6 insulin-secreting cell line. The protective effect of 25 mM glucose was prevented by an anti-insulin antibody and this antibody-induced increase in apoptosis was reversed by the presence of excess insulin. Glucose stimulated MIN6 cell proliferation and this was inhibited by blockade of insulin secretion, by an anti-insulin antibody and by phosphatidylinositol-3 kinase (PI-3K) inhibition. Furthermore, MIN6 cell proliferation was stimulated by depolarising concentrations of KCl and by insulin itself. These data indicate that insulin secreted by β-cells in response to elevated glucose exerts autocrine effects to protect against apoptosis and stimulate proliferation, and suggest that the insulin signalling cascade, through the PI-3K pathway, may be an effective means of maintaining β-cell mass in diabetes.  相似文献   

7.
Neurotensin (NT) is secreted from neurons and gastrointestinal endocrine cells. We previously reported that the three NT receptors (NTSRs) are expressed in pancreatic islets and beta cell lines on which we observed a protective effect of NT against cytotoxic agents. In this study, we explored the role of NT on insulin secretion in the endocrine pancreatic beta cells. We observed that NT stimulates insulin secretion at low glucose level and has a small inhibiting effect on stimulated insulin secretion from isolated islets or INS-1E cells. We studied the mechanisms by which NT elicited calcium concentration changes using fura-2 loaded islets or INS-1E cells. NT increases calcium influx through the opening of cationic channels. Similar calcium influxes were observed after treatment with NTSR selective ligands. NT-evoked calcium regulation involves PKC and the translocation of PKCα and PKC? to the plasma membrane. Part of NT effects appears to be also mediated by PKA but not via the Erk pathway. Taken together, these data provide evidence for an important endocrine role of NT in the regulation of the secretory function of beta cells.  相似文献   

8.
Phospholipase D (PLD) has been strongly implicated in the regulation of Golgi trafficking as well as endocytosis and exocytosis. Our aim was to investigate the role of PLD in regulating the biphasic exocytosis of insulin from pancreatic beta-cells that is essential for mammalian glucose homeostasis. We observed that PLD activity in MIN6 pancreatic beta-cells is closely coupled to secretion. Cellular PLD activity was increased in response to a variety of secretagogues including the nutrient glucose and the cholinergic receptor agonist carbamoylcholine. Conversely, pharmacological or hormonal inhibition of stimulated secretion reduced PLD activity. Most importantly, blockade of PLD-catalyzed phosphatidic acid formation using butan-1-ol inhibited insulin secretion in both MIN6 cells and isolated pancreatic islets. It was further established that PLD activity was required for both the first and the second phase of glucose-stimulated insulin release, suggesting a role in the very distal steps of exocytosis, beyond granule recruitment into a readily releasable pool. Visualization of granules using green fluorescent protein-phogrin confirmed a requirement for PLD prior to granule fusion with the plasma membrane. PLD1 was shown to be the predominant isoform in MIN6 cells, and it was located at least partially on insulin granules. Overexpression of wild-type or a dominant negative catalytically inactive mutant of PLD1 augmented or inhibited secretagogue-stimulated secretion, respectively. The results suggest that phosphatidic acid formation on the granule membrane by PLD1 is essential for the regulated secretion of insulin from pancreatic beta-cells.  相似文献   

9.
Tranilast, N-(3,4-demethoxycinnamoyl)-anthranilic acid, is an anti-allergic agent identified as an inhibitor of mast cell degranulation. Recently, tranilast was shown to decrease albuminuria in a rat model of diabetic nephropathy and to ameliorate vascular hypertrophy in diabetic rats, suggesting that it may be clinically useful in the treatment of diabetic complications. However, the effects of tranilast on glucose tolerance have not been elucidated. Thus, the aim of this study is to investigate the effect of tranilast on insulin secretion in pancreatic beta-cells. Treatment with tranilast significantly suppressed insulin secretion in INS-1E cells and rat islets induced by 16.7 mmol/l glucose. Furthermore, tranilast inhibited tolbutamide-induced insulin secretion. Treatment with tranilast increased (86)Rb (+) efflux from COS-1 cells in which pancreatic beta-cell-type ATP-sensitive K (+) (K (ATP)) channels were reconstructed and suppressed the cytosolic ATP/ADP ratio in INS-1E cells. Interestingly, treatment with tranilast enhanced glucose uptake in INS-1E cells. In the present study, we demonstrated that tranilast inhibited glucose- and tolbutamide-induced insulin secretion through the activation of K (ATP) channels in pancreatic beta-cells.  相似文献   

10.
Akos A. Gerencser 《BBA》2018,1859(9):817-828
Mitochondrial metabolism plays a central role in insulin secretion in pancreatic beta-cells. Generation of protonmotive force and ATP synthesis from glucose-originated pyruvate are critical steps in the canonical pathway of glucose-stimulated insulin secretion. Mitochondrial metabolism is intertwined with pathways that are thought to amplify insulin secretion with mechanisms distinct from the canonical pathway, and the relative importance of these two pathways is controversial. Here I show that glucose-induced mitochondrial membrane potential (MMP) hyperpolarization is necessary for, and predicts, the rate of insulin secretion in primary cultured human beta-cells. When glucose concentration is elevated, increased metabolism results in a substantial MMP hyperpolarization, as well as in increased rates of ATP synthesis and turnover marked by faster cell respiration. Using modular kinetic analysis I explored what properties of cellular energy metabolism enable a large glucose-induced change in MMP in human beta-cells. I found that an ATP-dependent pathway activates glucose or substrate oxidation, acting as a positive feedback in energy metabolism. This activation mechanism is essential for concomitant fast respiration and high MMP, and for a high magnitude glucose-induced MMP hyperpolarization and therefore for insulin secretion.  相似文献   

11.
12.
In human type 2 diabetes mellitus, loss of glucose-sensitive insulin secretion from the pancreatic beta-cell is an early pathogenetic event, but the mechanisms involved in glucose sensing are poorly understood. A messenger role has been postulated for L-glutamate in linking glucose stimulation to sustained insulin exocytosis in the beta-cell, but the precise nature by which L-glutamate controls insulin secretion remains elusive. Effects of L-glutamate on the activities of ser/thr protein phosphatases (PPase) and Ca(2+)-regulated insulin exocytosis in INS-1E cells were investigated. Glucose increases L-glutamate contents and promotes insulin secretion from INS-1E cells. L-glutamate also dose-dependently inhibits PPase enzyme activities analogous to the specific PPase inhibitor, okadaic acid. L-glutamate and okadaic acid directly and non-additively promote insulin exocytosis from permeabilized INS-1E cells in a Ca(2+)-independent manner. Thus, an increase in phosphorylation state, through inhibition of protein dephosphorylation by glucose-derived L-glutamate, may be a novel regulatory mechanism linking glucose sensing to sustained insulin exocytosis.  相似文献   

13.
Pancreatic beta-cells exposed to hyperglycemia produce reactive oxygen species (ROS). Because beta-cells are sensitive to oxidative stress, excessive ROS may cause dysfunction of beta-cells. Here we demonstrate that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from beta-cells. Intracellular ROS increased 15min after exposure to high glucose and this effect was blunted by inhibitors of the mitochondrial function. GIIS was also suppressed by H(2)O(2), a chemical substitute for ROS. Interestingly, the first-phase of GIIS could be suppressed by 50 microM H(2)O(2). H(2)O(2) or high glucose suppressed the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, and inhibitors of the mitochondrial function abolished the latter effects. Our data suggested that high glucose induced mitochondrial ROS, which suppressed first-phase of GIIS, at least in part, through the suppression of GAPDH activity. We propose that mitochondrial overwork is a potential mechanism causing impaired first-phase of GIIS in the early stages of diabetes mellitus.  相似文献   

14.
Numerous overexpression studies have recently implicated Syntaxin 4 as an effector of insulin secretion, although its requirement in insulin granule exocytosis is unknown. To address this, islets from Syntaxin 4 heterozygous (-/+) knockout mice were isolated and compared with islets from wild-type mice. Under static incubation conditions, Syntaxin 4 (-/+) islets showed a 60% reduction in glucose-stimulated insulin secretion compared with wild-type islets. Perifusion analyses revealed that Syntaxin 4 (-/+) islets secreted 50% less insulin during the first phase of glucose-stimulated insulin secretion and that this defect could be fully restored by the specific replenishment of recombinant Syntaxin 4. This essential role for Syntaxin 4 in secretion from the islet was localized to the beta-cells because small interfering RNA-mediated depletion of Syntaxin 4 in MIN6 beta-cells abolished glucose-stimulated insulin secretion. Moreover, immunofluorescent confocal microscopy revealed that Syntaxin 4 was principally localized to the beta-cells and not the alpha-cells of the mouse islet. Remarkably, islets isolated from transgenic mice that express 2.4-fold higher levels of Syntaxin 4 relative to wild-type mice secreted approximately 35% more insulin during both phases of insulin secretion, suggesting that increased Syntaxin 4 may be beneficial for enhancing biphasic insulin secretion in a regulated manner. Taken together, these data support the notion that Syntaxin 4-based SNARE complexes are essential for biphasic insulin granule fusion in pancreatic beta-cells.  相似文献   

15.
16.
Electrothermal atomic absorption spectroscopy was employed for measuring barium in beta-cell-rich pancreatic islets microdissected from ob/ob-mice. Both the uptake and efflux of barium displayed two distinct phases. There was a 4-fold accumulation of barium into intracellular stores when its extracellular concentration was 0.26 mM. Unlike divalent cations with more extensive intracellular accumulation, the washout of Ba2+ was not inhibited by D-glucose. Ba2+ served as a substitute for Ca2+ both in maintaining the glucose metabolism after removal of extracellular Ca2+ and making it possible for glucose to stimulate insulin release. Furthermore, Ba2+ elicited insulin release in the absence of glucose and other secretagogues. The latter effect was reversible and was markedly potentiated under conditions known to increase the beta-cell content of cyclic AMP. It is likely that the observed actions of Ba2+ are mediated by Ca2+, since Ca2+ -dependent regulatory proteins, such as calmodulin, apparently cannot bind Ba2+ specifically.  相似文献   

17.
18.
19.
To gain insight into the relationship between acyl coenzyme A (CoA) esters and glucose-induced insulin release, acyl-CoA profiles were determined in clonal pancreatic beta-cells (HIT). A high sensitivity high performance liquid chromatography method was used to measure malonyl, succinyl, beta-hydroxy beta-methylglutaryl and acetyl-CoA esters and free CoASH. Malonyl-CoA content increased more than 3-fold following exposure of HIT cells to 10 mM glucose. The rise in malonyl-CoA, which preceded insulin secretion, was evident 2 min after exposure to glucose and was sustained for at least 30 min. The increase in malonyl-CoA was associated with inhibition of fatty acid oxidation, increased de novo lipid synthesis and a rise in diacylglycerol content. Succinyl-CoA levels, which may reflect anaplerotic influx into the citric acid cycle, were elevated in the presence of glucose. The concentration of acetyl-CoA and the ratio of free CoASH to acetyl-CoA was unchanged. The data are consistent with a metabolic model in which malonyl-CoA mediates the switch from fatty acid catabolism to lipid synthesis during glucose stimulation of beta-cells. We suggest that these changes in lipid metabolism, by leading to increased diacylglycerol synthesis or protein acylation could play a pivotal role in the regulation of the sustained phase of insulin secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号