首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Sepharose-bound decamethylene diguanidine was assayed on the oxygen uptake of inverted submitochondrial particles. Sepharose-bound decamethylene diguanidine inhibited the oxygen uptake of the particles through a process that is reversed by K+. The results indicate that the inhibition of oxygen uptake by guanidines is due to the interaction of the positive guanidine group with a mitochondrial component that lies at a distance of less than 18 Å from the inner surface of the internal mitochondrial membrane.  相似文献   

2.
The inhibition of succinate- and NADH-oxidase activities of submitochondrial particles by 4,7-diphenyl-1,10-phenantroline was studied. The inhibition was shown to increase when the particles were pretreated with SH-reagents. The treatment of submitochondrial particles with ethanol in the presence of 1,10-phenantroline resulted in a complete inactivation of succinate oxidase and succinate: tetramethyl-n-phenyldiamine reductase; the succinate PMS reductase activity was only partially inhibited after such treatment. It is concluded that tetramethyl-n-phenyldiamine and phenazine metasulfate react with different sites of the succinate dehydrogenase complex. The changes in the properties of submitochondrial particles after ethanol--phenantroline treatment are apparently due to the effect of non-polar solvent rather than to the extraction of non-haem iron.  相似文献   

3.
Alkylguanidines inhibit the respiration of submitochondrial particles oxidizing NADH, while hydrophilic guanidines stimulate the rate of oxygen uptake. Regardless of the effect that a guanidine exerts on respiration, all guanidines tested inhibited the stimulatory action of K+ on the oxygen uptake of submitochondrial particles. It was found also that octylguanidine modified the Arrhenius plot of respiration of the particles. These findings suggest that alkylguanidines exert their action through the interaction of the alkyl chain with a hydrophobic region in the membrane and also through the interaction of the guanidine moiety with a certain locus in the membrane.The results of studies made on the effect of a wide variety of cations on the respiration of submitochondrial particles may be explained on the assumption that in the inner membrane of the mitochondria exists a negatively charged surface or region with which cations can interact. These results also suggest that the stimulation or inhibition of respiration induced by a given cation depends on the ease with which it can move within this hypothetical negative region.  相似文献   

4.
Human reticulocytes obtained from patients suffering from various haemolytic disorders convert exogenous [1-14C]-arachidonic acid to 15-hydroxy-5,8,11,13(Z,Z,Z,E)-eicosatetraenoic acid (15-HETE). Immunological studies (dot blot, Western blot) indicated that human reticulocytes contain a lipoxygenase which cross-reacts with a polyclonal antiserum against the rabbit reticulocyte lipoxygenase. Northern blotting with a cloned lipoxygenase cDNA probe shows that the specific mRNA is also present. Reaction of the lipoxygenase with submitochondrial particles caused inactivation of respiratory enzymes. The occurrence of an erythroid cell specific lipoxygenase of similar type in reticulocytes of various mammals and man suggests the general role of this enzyme in the maturational degradation of mitochondria.  相似文献   

5.
1. Unlike chloroplasts, submitochondrial particles are not uncoupled by nigericin + KCl or NH4Cl. Also the uncoupling effect of lipophilic anions is largely independent of the addition of weak bases. 2. Low concentrations of permeant anions cause a shift of the steady-state energy level rather than a cycle of energy utilization. The degree of inhibition of ATP synthesis by tetraphenylboron is larger than required for the uptake of the anion. 3. Lipophilic anions such as bromthymolblue, bromcresolpurple, and 8-anilino-1-napthalene sulphonate cause a pH-independent, 50% uncoupling in submitochondrial particles at concentrations of 3, 30 and 30 muM, respectively. The passive interaction of bromthymolblue and bromcresolpurple appears as a pH-dependent distribution between two pHases. ATP causes a pH-independent slight shift in the anion distribution, with negligible anion accumulation. 4. Addition of amines to energized submitochondrial particles results in two types of effects; uptake of amines and uncoupling. While in chloroplasts amine uptake and uncoupling are closely associated, this is not the case in submitochondrial particles. The uncoupling effect is observed only with lipophilic and not with hydrophilic amines, and the degree of uncoupling increases with the lipophilicity of the amines. The amine uptake, on the other hand, is accompanied by negligible uncoupling. 5. While the uptake of amines is dependent on the presence of non-permeant anions, such as Cl-, the uncoupling effect is independent of Cl-. Furthermore the amine uncoupling is markedly enhanced by lipophilic anions. 6. The view is discussed that the uncoupling effect of lipophilic anions and lipophilic amines in submitochondrial particles is due to a catalytic energy dissipation rather than to a stoichiometry energy utilization. The molecular mechanism of uncoupling presumably involves a cycling of charges after a perturbation of the membrane structure.  相似文献   

6.
Luliberin, a luteinizing hormone-releasing hormone, was shown to inhibit the respiratory enzymes of rat liver mitochondria and submitochondrial particles prepared from beef heart mitochondria. At the hormone concentration of 8.10(-6) M the NADH-oxidase activity of the submitochondrial particles was inhibited by 50%. The fragments of the hormone and its analogs and pyroglutamic acid, oxytocin and bradikinin possessed practically no inhibiting effects. In the case of submitochondrial particles the inhibition was only observed in the presence of Ca2+ and was significantly decreased after addition of bovine serum albumin and phospholipase inhibitors -- butacaine and dicaine. It is assumed that the effect of luliberin on the respiratory chain is mediated through mitochondrial phospholipase.  相似文献   

7.
We have provided evidence that mitochondrial membrane permeability transition induced by inorganic phosphate, uncouplers or prooxidants such as t-butyl hydroperoxide and diamide is caused by a Ca2+-stimulated production of reactive oxygen species (ROS) by the respiratory chain, at the level of the coenzyme Q. The ROS attack to membrane protein thiols produces cross-linkage reactions, that may open membrane pores upon Ca2+ binding. Studies with submitochondrial particles have demonstrated that the binding of Ca2+ to these particles (possibly to cardiolipin) induces lipid lateral phase separation detected by electron paramagnetic resonance experiments exploying stearic acids spin labels. This condition leads to a disorganization of respiratory chain components, favoring ROS production and consequent protein and lipid oxidation.  相似文献   

8.
The surface charge of intact mitochondria and submitochondrial particles was examined by the technique of preparative free flow electrophoresis. When submitochondrial preparations obtained by a swelling-contraction procedure were examined with this technique, two fractions were observed. One of these fractions exhibited the same electrophoretic properties as intact mitochondria, which indicated that it was derived from the outer limiting membrane of the mitochondrion. This fraction was found to contain the enzymes monoamine oxidase and rotenone-insensitive NADH-cytochrome c reductase which have been reported to be localized in the outer mitochondrial membrane. The other fraction exhibited an electrophoretic mobility which was different from that of intact mitochondria, and this fraction contained enzymes characteristic of the inner membrane-matrix fraction such as soluble and particulate enzymes of the Krebs cycle. Microsomes exhibited an electrophoretic mobility which was almost identical with that of the outer mitochondrial membrane. In addition to resolving the localization of enzymes in mitochondrial membranes, these data indicate that the outer limiting membrane of the mitochondrion is the sole determinant of the surface charge of mitochondria.  相似文献   

9.
The effect of dibucaine on passive and respiration-driven ion translocation and oxidative phosphorylation in submitochondrial particles from beef-heart has been studied.Dibucaine inhibited the nigericin-mediated H+/K+ exchange diffusion and the electrogenic, valinomycin-mediated K+ translocation in submitochondrial particles.The local anaesthetic exerted a direct stimulatory effect on the respiration-driven proton uptake and on the passive proton-diffusion reactions. The increase of the respiration-linked proton turnover caused by dibucaine was accompanied by uncoupling of oxidative phosphorylation. It is concluded that spontaneous noncoupled as well as ionophoremediated K+ translocation in mitochondria occurs across phospholipid bilayer regions of the membrane whilst other components of the membrane would be specifically involved in active and passive proton translocation across the membrane.The results indicate that polar groups of membrane phospholipids play an important role in energy conservation and transfer in the mitochondrial membrane.  相似文献   

10.
Binding of 8-anilino-1-naphthalene sulphonate (ANS) to rat liver mitochondria and submitochondrial inside-out particles was measured under energized and de-energized conditions. In mitochondria, energization/de-energization changed the binding capacity for ANS extrapolated for its infinitely high concentration, whereas the apparent Kd value remained unchanged. In submitochondrial particles apparent Kd was changed but the extrapolated maximum binding was not altered. These results are compatible with theoretical considerations assuming a free permeability of mitochondrial membranes to ANS and its distribution according to the transmembrane potential. The spin-labelled cationic amphiphile, 4-(dodecyl dimethyl ammonium)-1-oxyl-2,2,6,6-tetramethyl piperidine bromide (CAT12), was trapped by de-energized mitochondria in such a way that about half of the bound probe became inaccessible to reduction by externally added ascorbate. This inaccessible fraction was increased by energization. This indicates that this cationic probe can penetrate through the inner mitochondrial membrane. De-energization produced a parallel shift of the Lineweaver-Burk plots for the oxidation of external ferrocytochrome c by mitoplasts and of succinate by submitochondrial particles. A similar shift was obtained by a partial inhibition of succinate oxidation by antimycin A. Thus, the observed changes of the kinetics of the two membrane-bound enzyme systems on de-energization can be interpreted as reflecting changes of the control points of mitochondrial respiration rather than changes of the surface potential. It is concluded that neither the fluorescent probe ANS, the spin-labelled amphiphilic cation CAT12, nor the kinetics of some respiratory enzyme systems provide a sufficient proof for changes of the surface potential of the inner mitochondrial membrane upon energization.  相似文献   

11.
The effect of octylguanidine and oligomycin on the oxygen uptake of rat liver mitochondria and on the ATPase activity of "sonic" submitochondrial particles has been studied. 1. Octylguanidine inhibits state 3 respiration with glutamate-malate and succinate as substrates, but much lower concentrations are required to inhibit oxygen uptake with the former substrates. State 4 respiration is unaffected by octylguanidine. 2. The titration-curve for the octylguanidine inhibition of glutamate-malate oxidation is hyperbolic and apparently biphasic, half-maximal inhibition is obtained at 30 muM octylguanidine. The octylguanidine-curve for inhibition of succinate oxidation is sigmoid with half-maximal inhibition at about 250 muM. 3. Octylguanidine and oligomycin show additive inhibitory action on state 3 respiration with both glutamate plus malage and succinate as respiratory substrates. 4. Concentrations of oligomycin or octylguanidine, which added separately are ineffective on state 3 respiration, become inhibitory when the two inhibitors are added together. 5. Octylguanidine inhibits the ATPase activity of sonic submitochondrial particles with a hyperbolic titration-curve analogous to that obtained for oligomycin inhibition. The inhibitory actions of octylguanidine and oligomycin on the ATPase activity are additive. 6. It is concluded that octylguanidine acts directly on the ATPase complex and that its binding at the action site is mutually exclusive with the binding of oligomycin. A kinetic explanation is given for the reported higher sensitivity of site I phosphorylation to octylguanidine.  相似文献   

12.
Characterization and function of mitochondrial nitric-oxide synthase   总被引:9,自引:0,他引:9  
The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase. This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations (intact, purified mitochondria, permeabilized mitochondria, mitoplasts, submitochondrial particles) from different organs (liver, heart) and species (rat, pig). Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. The increased K(m) of cytochrome oxidase for oxygen and the steady-state reduction of the electron chain carriers provided experimental evidence for the direct interaction of this oxidase with endogenous nitric oxide. The increase in hydrogen peroxide production by nitric oxide-producing mitochondria not accompanied by the full reduction of the respiratory chain components indicated that cytochrome c oxidase utilizes nitric oxide as an alternative substrate. Finally, effectors or modulators of cytochrome oxidase (the irreversible step in oxidative phosphorylation) had been proposed during the last 40 years. Nitric oxide is the first molecule that fulfills this role (it is a competitive inhibitor, produced at a fair rate near the target site) extending the oxygen gradient to tissues.  相似文献   

13.
The present study shows that deprenyl, a known inhibitor of monoamine oxidase B (MAO B), may generate changes in mitochondrial function. Brain submitochondrial membranes (SMP), synaptosomes and cytosolic fractions were incubated with different deprenyl concentrations and nitric oxide synthase (NOS) activity was measured. The effect of deprenyl on oxygen consumption, calcium-induced permeability transition and hydrogen peroxide (H(2)O(2)) production rates was studied in intact mitochondria. Respiratory complexes and monoamine oxidase activities were also measured in submitochondrial membranes. Incubation of brain submitochondrial membranes with deprenyl 10, 25 and 50 microM inhibited nitric oxide synthase activity in a concentration-dependent manner. The same effect was observed in cytosolic fractions and synaptosomes. Monoamine oxidase activity was inhibited at lower deprenyl concentrations (from 0.5 microM). Cytochrome oxidase (complex IV) activity was found 42% increased in the presence of 25 microM deprenyl in a condition of maximal nitric oxide synthase activity. Incubation of brain mitochondria with deprenyl 25 microM produced a 60% increase in oxygen uptake in state 3, but no significant changes were observed in state 4. Pre-incubation of brain mitochondria with deprenyl 0.5 and 1 microM inhibited calcium-induced mitochondrial permeability transition and decreased hydrogen peroxide production rates. Our results suggest that in vitro effects of deprenyl on mitochondrial function can occur through two different mechanisms, involving nitric oxide synthase inhibition and decreased hydrogen peroxide production.  相似文献   

14.
When succinate oxidation by submitochondrial particles is blocked by antimycin, NoHOQnO or funiculosin, addition of ferricyanide restores oxygen uptake coupled to membrane potential generation. The effect of ferricyanide is abolished by mucidin or myxothiazol, as well as by KCN. The data strongly favor a cyclic redox loop mechanism in site 2 and show that either heme of the ferrous cytochrome b or ubisemiquinone formed in the QH2-oxidizing center of complex b-c1 is accessible to ferricyanide at the outer (M) side of the submitochondrial particle membrane.  相似文献   

15.
The hydrolysis of ATP, ADP or GTP was characterized in mitochondria and submitochondrial particles since a tightly-bound ATPase associated with the inner mitochondrial membrane from the human placenta has been described. Submitochondrial particles, which are basically inner membranes, were used to define the location of this enzyme. Mitochondria treated with trypsin and specific inhibitors were also used. The oxygen consumption stimulated by ATP or ADP was 100% inhibited in intact mitochondria by low concentrations of oligomycin (0.5 microgram/mg) or venturicidine (0.1 microgram/mg), while the hydrolysis of ATP or ADP was insensitive to higher concentrations of these inhibitors but it was inhibited by vanadate. Oligomycin or venturicidine showed a different inhibition pattern in intact mitochondria in relation to the hydrolysis of ATP, ADP or GTP. When submitochondrial particles were isolated from mitochondria incubated with oligomycin or venturicidine, no further inhibition of the nucleotide hydrolysis was observed, contrasting with the partial inhibition observed in the control. By incubating the placental mitochondria with trypsin, a large fraction of the hydrolysis of nucleotides was eliminated. In submitochondrial particles obtained from mitochondria treated with trypsin or trypsin plus oligomycin, the hydrolysis of ATP was 100% sensitive to oligomycin at low concentrations, resembling the oxygen consumption; however, this preparation still showed some ADP hydrolysis. Native gel electrophoresis showed two bands hydrolyzing ADP, suggesting at least two enzymes involved in the hydrolysis of nucleotides, besides the F1F0-ATPase. It is concluded that human placental mitochondria possesses ADPase and ATP-diphosphohydrolase activities (247).  相似文献   

16.
M C Sorgato  S J Ferguson 《Biochemistry》1979,18(25):5737-5742
The relationship between the rate of substrate oxidation and the protonmotive force (electrochemical proton gradient) generated by bovine heart submitochondrial particles has been examined. Unexpectedly, oxidation of succinate generated a higher protonmotive force than the oxidation of NADH, although the rate of proton translocation across the membrane was inferred to be considerably lower with succinate as substrate. The data suggest that the flow of electrons through site 1 of the respiratory chain may increase the conductance of the mitochondrial membrane for protons. Upon reduction of the rate of succinate oxidation by titration with malonate, the protonmotive force remained essentially constant until the extent of inhibition was greater than 75%. The general conclusion from this work is that a constant passive membrane conductance for protons cannot be assumed.  相似文献   

17.
1. Two allelic mutants of Saccharomyces cerevisiae with a deficiency in the biosynthesis of ubiquinone have been isolated. The properties of one particular mutant strain were investigated. Submitochondrial particles of this strain contain maximally 3% of the amount of ubiquinone in wild-type particles; the amounts of other components of the respiratory chain are essentially normal. 2. The respiratory rates of mutant cells, mitochondria and submitochondrial particles are low with ubiquinone-dependent substrates, but are restored to normal levels by addition of Q-1; the restored respiration is antimycin sensitive. Intact cells and mitochondria show respiratory control both in the absence and presence of Q-1. 3. The NADH:Q-1 oxidoreductase of submitochondrial particles of the mutant followspseudo first-order kinetics in [Q-1]. QH2-1 inhibits competitively with respect to Q-1, the Ki for QH2-1 being equal to the Km for Q-1. 4. Succinate dehydrogenase in both wild-type and mutant submitochondrial particles can be activated by NADH. 5. The turnover number of succinate dehydrogenase in the mutant, measured with phenazine methosulphate as primary electron acceptor, is about one-half that of wild-type particles. The turnover numbers measured with Q-1 as electron acceptor are about the same in the two types of particles. 6. The kinetics of redox changes in cytochrome b, in the presence of antimycin and oxygen, are distinctly different in the mutant and wild-type particles. They indicate that ubiquinone plays an important role in the phenomenon of the increased reducibility of cytochrome b induced by antimycin plus oxygen.  相似文献   

18.
The effect of chronic alcohol consumption on steady-state kinetic characteristics of cytochrome oxidase in rat liver was studied using submitochondrial particles prepared from ethanol-fed and control rats. Preparations from both control and alcoholic rats had equivalent apparent Km values for cytochrome c of 13 microM in the presence of phenazine methosulfate or 19 microM with N,N,N',N'-tetramethylphenylene diamine as oxidation-reduction mediators at physiological ionic strength. Both preparations showed comparable stimulation (approx. 3-fold) of oxidase activity following detergent solubilization of the membrane and similar temperature dependence for oxidase activity. Under all conditions, preparations from alcohol-fed rats displayed 30 to 50% lower rats of cytochrome oxidase activity per unit membrane protein than those from control rats. The diminution in specific activity per mg protein was accompanied by a similar decline in heme aa3 content, as has been noted in previous studies. When expressed on a turnover number basis, the molecular activity of cytochrome oxidase (natoms O/min per nmol heme a) was equivalent in both alcoholic and control preparations. The results indicate that the intrinsic kinetic characteristics of cytochrome oxidase are not changed by alcohol consumption. The data suggest that the characteristic decline in heme aa3 content and cytochrome oxidase specific activity seen in ethanol-fed rats does not arise from alterations in the accessibility of the oxidase towards cytochrome c, or from changes in bulk phase lipid composition or physical properties. The results support the conclusion that ethanol consumption decreases the membrane content of functionally active oxidase molecules, but does not change the catalytic properties of these oxidase molecules.  相似文献   

19.
Previous studies have established that hepatic mitochondria and submitochondrial particles from rats, fed ethanol chronically, display diminished respiratory activities and alterations in the contents of specific electron transfer chain components. The latter include a decrease of about 50% in cytochrome b content. Titrations of respiratory activity in submitochondrial particles with antimycin, a stoichiometric inhibitor of electron flow through the cytochrome b-c1 region of the respiratory chain, indicated a comparable decrease (35%) in the amount of antimycin required to elicit maximal inhibition (‘titer’) after chronic ethanol treatment. Measurements of antimycin binding to submitochondrial particles by fluorescence quenching demonstrated a similar diminution in the number of tight binding sites per mg protein. By contrast, hepatocytes isolated from control and ethanol-fed rats exhibited nearly identical rates of oxygen utilization under a variety of conditions. However, antimycin titrations of respiratory activity in isolated hepatocytes revealed a 60% decrease in the antimycin titer, but no change in the maximal extent of inhibition after chronic ethanol treatment. Direct measurements of cytochrome b which could be reduced in the presence of antimycin in hepatocytes confirmed a comparable decrease (42%) after chronic ethanol treatment. The results demonstrate that molecular alterations in the cytochrome b region of the respiratory chain caused by ethanol feeding are present in intact liver cells, but suggest that substrate accessibility, rather than the respiratory chain, limits the rate of oxygen utilization in isolated hepatocytes. The data also suggest that mitochondria account for at least 80% of total oxygen utilization by liver cells from both control and ethanol-fed rats.  相似文献   

20.
Both Km and Vmax values of cytochrome c oxidase for cytochrome c were elevated in oleic acid-incorporated mitochondria, whereas the amount of oleic acid incorporated into submitochondrial particles was smaller than that into mitochondria and the fatty acid had little effect on the enzyme activity. The degree of change in the bulk membrane fluidity was, however, almost the same in mitochondria and submitochondrial particles. Solubilized cytochrome c oxidase was insensitive to the effect of oleic acid. Oleic acid may act as a modifier of the interaction between cytochrome c oxidase and membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号