首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The use of optimization techniques to predict individual muscle forces in redundant biomechanical systems implies the formulation of a criterion for load sharing between the muscles. In part I of this paper, the characteristics and performance of several linear and non-linear criteria reported in the literature have been compared for static-isometric knee flexion. The results show that linear criteria inherently predict discrete muscle action (orderly recruitment of muscles) whereas non-linear criteria can predict synergistic action. All criteria predict that relatively more force is allocated to muscles with large moment arms. When muscle stresses (or ratios of muscle force to maximum muscle force) are used as the decision variables in the objective function, then relatively more force is allocated to muscles with large maximum possible force as well. Future formulations of the optimization should consider the differences in fiber type composition among the muscles. Such an approach is presented in part II of the paper.  相似文献   

3.
This paper explores the possibility of classification based on Pareto multi-objective optimization. The efforts on solving optimization problems using the Pareto-based MOO methodology have gained increasing impetus on comparison of selected constraints. Moreover we have different types of classification problem based on optimization model like single objective optimization, MOO, Pareto optimization and convex optimization. All above techniques fail to generate distinguished class/subclass from existing class based on sensitive data. However, in this regard Pareto-based MOO approach is more powerful and effective in addressing various data mining tasks such as clustering, feature selection, classification, and knowledge extraction. The primary contribution of this paper is to solve such noble classification problem. Our work provides an overview of the existing research on MOO and contribution of Pareto based MOO focusing on classification. Particularly, the entire work deals with association of sub-features for noble classification. Moreover potentially interesting sub-features in MOO for classification are used to strengthen the concept of Pareto based MOO. Experiment has been carried out to validate the theory with different real world data sets which are more sensitive in nature. Finally, experimental results provide effectiveness of the proposed method using sensitive data.  相似文献   

4.
A new method for the choice of variables with the greatest discriminatory power in the location model for mixed variable discriminant analysis is presented in the paper. The procedure based on the multivariate discriminatory measure enables a simultaneous reduction of the number of discrete and continuous variables. The introduced criterion can be used for both optimal or step-wise selection of variable subset. As an example the results of the stepwise variable selection for some medical data are presented in the paper.  相似文献   

5.
When combining adaptive designs with control of the False Discovery Rate one has to keep in mind that the most frequently used procedure for controlling the False Discovery Rate--the explorative Simes procedure--is a stepwise multiple testing procedure. At the interim analysis of an adaptive design it is however not yet known what the boundaries for rejection of hypotheses in the final analysis will be as these boundaries depend on the size of the final p-values. Therefore classical adaptive designs with a predefined stopping criterion for early rejection of hypotheses are not well suited. We propose a generalized definition of a global p-value for a two-stage adaptive design permitting a flexible decision for stopping at the interim analysis. By means of a simulation study in the field of genetic epidemiology we illustrate how applying such a two-stage design can reduce costs.  相似文献   

6.
One line of DNA computing research focuses on parallel search algorithms, which can be used to solve many optimization problems. DNA in solution can provide an enormous molecular library, which can be searched by molecular biological techniques. We have implemented such a parallel search for solutions to knapsack problems, which ask for the best way to pack a knapsack of limited volume. Several instances of knapsack problems were solved using DNA. We demonstrate how the computations can be extended by in vivo translation of the DNA library into protein. This combination of DNA and protein allows for multi-criterion optimization. The knapsack computations performed can then be seen as protein optimizations, one of the most complex computations performed by natural systems.  相似文献   

7.
Determining tendon tensions of the finger muscles is crucial for the understanding and the rehabilitation of hand pathologies. Since no direct measurement is possible for a large number of finger muscle tendons, biomechanical modelling presents an alternative solution to indirectly evaluate these forces. However, the main problem is that the number of muscles spanning a joint exceeds the number of degrees of freedom of the joint resulting in mathematical under-determinate problems. In the current study, a method using both numerical optimization and the intra-muscular electromyography (EMG) data was developed to estimate the middle finger tendon tensions during static fingertip force production. The method used a numerical optimization procedure with the muscle stress squared criterion to determine a solution while the EMG data of three extrinsic hand muscles serve to enforce additional inequality constraints. The results were compared with those obtained with a classical numerical optimization and a method based on EMG only. The proposed method provides satisfactory results since the tendon tension estimations respected the mechanical equilibrium of the musculoskeletal system and were concordant with the EMG distribution pattern of the subjects. These results were not observed neither with the classical numerical optimization nor with the EMG-based method. This study demonstrates that including the EMG data of the three extrinsic muscles of the middle finger as inequality constraints in an optimization process can yield relevant tendon tensions with regard to individual muscle activation patterns, particularly concerning the antagonist muscles.  相似文献   

8.
9.
A potential effective treatment for prevention of osteoporotic hip fractures is augmentation of the mechanical properties of the femur by injecting it with agents such as (PMMA) bone cement – femoroplasty. The operation, however, is only in research stage and can benefit substantially from computer planning and optimization. We report the results of computational planning and optimization of the procedure for biomechanical evaluation. An evolutionary optimization method was used to optimally place the cement in finite element (FE) models of seven osteoporotic bone specimens. The optimization, with some inter-specimen variations, suggested that areas close to the cortex in the superior and inferior of the neck and supero-lateral aspect of the greater trochanter will benefit from augmentation. We then used a particle-based model for bone cement diffusion simulation to match the optimized pattern, taking into account the limitations of the actual surgery, including limited volume of injection to prevent thermal necrosis. Simulations showed that the yield load can be significantly increased by more than 30%, using only 9 ml of bone cement. This increase is comparable to previous literature reports where gross filling of the bone was employed instead, using more than 40 ml of cement. These findings, along with the differences in the optimized plans between specimens, emphasize the need for subject-specific models for effective planning of femoral augmentation.  相似文献   

10.
The undersomersault, or felge, to handstand on parallel bars has become an important skill in Men's Artistic Gymnastics as it forms the basis of many complex variations. To receive no deductions from the judges, the undersomersault must be performed without demonstrating the use of strength to achieve the final handstand position. Two male gymnasts each performed nine undersomersaults from handstand to handstand while data were recorded using an automatic motion capture system. The highest and lowest scoring trials of each gymnast, as determined by four international judges, were chosen for further analysis. Three optimization criteria were used to generate undersomersault technique during the swing phase of the skill using a computer simulation model: minimization of peak joint torques, minimization of horizontal velocity before release, and maximization of angular momentum. The techniques used by both gymnasts could be explained using the second optimization criterion which facilitated further skill development. The first optimization criterion generated a technique advocated for beginners where strength might be expected to be a limiting factor. The third optimization criterion resulted in a different type of undersomersault movement of greater difficulty according to the FIG Code of Points.  相似文献   

11.
Evolution by variation and natural selection is often viewed as an optimization process that favors those organisms which are best adapted to their environment. This leaves open the issue of how to measure adaptation and what criterion is implied for optimization. This problem has been framed and analysed mathematically under the assumption that individuals compete to minimize expected losses across a series of decisions (e.g. choice of behavior), where each decision offers a stochastic payoff. But the fact that a particular analysis is tractable for a specified criterion does not imply the fidelity of that criterion. Computer simulations involving a version of the k -armed bandit problem can address the veracity of the hypothesis that individuals are selected to minimize expected losses. The results offered here do not support this hypothesis.  相似文献   

12.
This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes.  相似文献   

13.
Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.  相似文献   

14.
The goal of protein engineering and design is to identify sequences that adopt three-dimensional structures of desired function. Often, this is treated as a single-objective optimization problem, identifying the sequence–structure solution with the lowest computed free energy of folding. However, many design problems are multi-state, multi-specificity, or otherwise require concurrent optimization of multiple objectives. There may be tradeoffs among objectives, where improving one feature requires compromising another. The challenge lies in determining solutions that are part of the Pareto optimal set—designs where no further improvement can be achieved in any of the objectives without degrading one of the others. Pareto optimality problems are found in all areas of study, from economics to engineering to biology, and computational methods have been developed specifically to identify the Pareto frontier. We review progress in multi-objective protein design, the development of Pareto optimization methods, and present a specific case study using multi-objective optimization methods to model the tradeoff between three parameters, stability, specificity, and complexity, of a set of interacting synthetic collagen peptides.  相似文献   

15.
Cytotoxic T-lymphocyte (CTL) escape mutation is associated with long-term behaviors of human immunodeficiency virus type 1 (HIV-1). Recent studies indicate heterogeneous behaviors of reversible and conservative mutants while the selection pressure changes. The purpose of this study is to optimize the selection pressure to minimize the long-term virus load. The results can be used to assist in delivery of highly loaded cognate peptide-pulsed dendritic cells (DC) into lymph nodes that could change the selection pressure. This mechanism may be employed for controlled drug delivery. A mathematical model is proposed in this paper to describe the evolutionary dynamics involving viruses and T cells. We formulate the optimization problem into the framework of evolutionary game theory, and solve for the optimal control of the selection pressure as a neighborhood invader strategy. The strategy dynamics can be obtained to evolve the immune system to the best controlled state. The study may shed light on optimal design of HIV-1 therapy based on optimization of adaptive CTL immune response.  相似文献   

16.
17.

Key message

Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives.

Abstract

We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified ‘best’ strategies can be improved to be at least twice as effective without increasing time or expenses.
  相似文献   

18.
Variable Selection for Clustering with Gaussian Mixture Models   总被引:3,自引:0,他引:3  
Summary .  This article is concerned with variable selection for cluster analysis. The problem is regarded as a model selection problem in the model-based cluster analysis context. A model generalizing the model of Raftery and Dean (2006,  Journal of the American Statistical Association   101, 168–178) is proposed to specify the role of each variable. This model does not need any prior assumptions about the linear link between the selected and discarded variables. Models are compared with Bayesian information criterion. Variable role is obtained through an algorithm embedding two backward stepwise algorithms for variable selection for clustering and linear regression. The model identifiability is established and the consistency of the resulting criterion is proved under regularity conditions. Numerical experiments on simulated datasets and a genomic application highlight the interest of the procedure.  相似文献   

19.
A Bayesian procedure is developed for the selection of concomitant variables in survival models. The variables are selected in a step-up procedure according to the criterion of maximum expected likelihood, where the expectation is over the prior parameter space. Prior knowledge of the influence of these covariates on patient prognosis is incorporated into the analysis. The step-up procedure is stopped when the Bayes factor in favor of omitting the variable selected in a particular step exceeds a specified value. The resulting model with the selected variables is fitted using Bayes estimates of the coefficients. This technique is applied to Hodgkin's disease data from a large Cooperative Clinical Trial Group and the results are compared to the results from the classical likelihood selection procedure.  相似文献   

20.
Microarray data contains a large number of genes (usually more than 1000) and a relatively small number of samples (usually fewer than 100). This presents problems to discriminant analysis of microarray data. One way to alleviate the problem is to reduce dimensionality of data by selecting important genes to the discriminant problem. Gene selection can be cast as a feature selection problem in the context of pattern classification. Feature selection approaches are broadly grouped into filter methods and wrapper methods. The wrapper method outperforms the filter method but at the cost of more intensive computation. In the present study, we proposed a wrapper-like gene selection algorithm based on the Regularization Network. Compared with classical wrapper method, the computational costs in our gene selection algorithm is significantly reduced, because the evaluation criterion we proposed does not demand repeated training in the leave-one-out procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号