首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic analysis of the bacterial communities in marine sediments.   总被引:12,自引:13,他引:12       下载免费PDF全文
For the phylogenetic analysis of microbial communities present in environmental samples microbial DNA can be extracted from the sample, 16S rDNA can be amplified with suitable primers and the PCR, and clonal libraries can be constructed. We report a protocol that can be used for efficient cell lysis and recovery of DNA from marine sediments. Key steps in this procedure include the use of a bead mill homogenizer for matrix disruption and uniform cell lysis and then purification of the released DNA by agarose gel electrophoresis. For sediments collected from two sites in Puget Sound, over 96% of the cells present were lysed. Our method yields high-molecular-weight DNA that is suitable for molecular studies, including amplification of 16S rRNA genes. The DNA yield was 47 micrograms per g (dry weight) for sediments collected from creosote-contaminated Eagle Harbor, Wash. Primers were selected for the PCR amplification of (eu)bacterial 16S rDNA that contained linkers with unique 8-base restriction sites for directional cloning. Examination of 22 16S rDNA clones showed that the surficial sediments in Eagle Harbor contained a phylogenetically diverse population of organisms from the Bacteria domain (G. J. Olsen, C. R. Woese, and R. Overbeek, J. Bacteriol. 176:1-6, 1994) with members of six major lineages represented: alpha, delta, and gamma Proteobacteria; the gram-positive high G+C content subdivision; clostridia and related organisms; and planctomyces and related organisms. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA database. The analysis of clonal representives in the first report using molecular techniques to determine the phylogenetic composition of the (eu)bacterial community present in coastal marine sediments.  相似文献   

2.
3.
Response of marine microbial communities to anthropogenic stress   总被引:1,自引:0,他引:1  
Marine microbial communities adapt rapidly to changingenvironmental conditions, including anthropogenicstress. Adaptation involves a wide range ofstrategies, including, (a) formation of resistant,dormant stages, (b) initiation of repair mechanisms, (c)immobilization of toxic chemicals, (d) active transportof chemicals out of the cell, (e) use of contaminantchemicals as carbon or energy sources, and (f)transformation of contaminants to less toxic or morevolatile forms.Adaptation responses are generally plasmid- orchromosomally-mediated and controlled throughinduction or derepression of a variety of biochemicalpathways. Characterization of microbial communityresponses at the molecular level provides biomarkersof contaminant exposure which in turn may be used toprovide an overall picture of ecosystem health. Thisreview will discuss the interactions betweenmicroorganisms and environmental contaminants and thepotential use of microbial biomarkers to assess thehealth of the microbial ecosystem.  相似文献   

4.
Du J  Xiao K  Huang Y  Li H  Tan H  Cao L  Lu Y  Zhou S 《Antonie van Leeuwenhoek》2011,100(3):317-331
This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.  相似文献   

5.
6.
In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associated with uranium-contaminated subsurface sediments along geochemical gradients. DNA and RNA were extracted and amplified from four sediment-depth intervals representing moderately acidic (pH 3.7) to near-neutral (pH 6.7) conditions. Phylotypes related to Proteobacteria (Alpha-, Beta-, Delta- and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Firmicutes and Planctomycetes were detected in DNA- and RNA-derived clone libraries. Diversity and numerical dominance of phylotypes were observed to correspond to changes in sediment geochemistry and rates of microbial activity, suggesting that geochemical conditions have selected for well-adapted taxa. Sequences closely related to nitrate-reducing bacteria represented 28% and 43% of clones from the total and metabolically active fractions of the microbial community, respectively. This study provides the first detailed analysis of total and metabolically active microbial communities in radionuclide-contaminated subsurface sediments. Our microbial community analysis, in conjunction with rates of microbial activity, points to several groups of nitrate-reducers that appear to be well adapted to environmental conditions common to radionuclide-contaminated sites.  相似文献   

7.
Abstract

The study of microbial communities in river sediments contaminated by thallium (Tl) is necessary to achieve the information for in-situ microbially mediated bioremediation. However, little is known about the microbial community in Tl-contaminated river sediments. In the present study, we characterized the microbial community and their responses to Tl pollution in river sediments from the Tl-mineralized Lanmuchang area, Southwest Guizhou, China. Illumina sequencing of 16S rRNA amplicons revealed that over 40 phyla belong to the domain bacteria. In all samples, Proteobacteria, Cyanobacteria, and Actinobacteria were the most dominant phyla. Based on the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis) analysis, microbial composition of each segment was distinct, indicating in-situ geochemical parameters (including Tl, sulfate, TOC, Eh, and pH) had influenced on the microbial communities. Moreover, canonical correspondence analysis (CCA) was employed to further elucidate the impact of geochemical parameters on the distribution of microbial communities in local river sediments. The results indicated that a number of microbial communities including Cyanobacteria, Spirochaete, Hydrogenophaga, and Acinetobacter were positively correlated with total Tl, suggesting potential roles of these microbes to Tl tolerance or to biogeochemical cycling of Tl. Our results suggested a reliable location for the microbial community’s diversity in the presence of high concentrations of Tl and might have a potential association for in-situ bioremediation strategies of Tl-contaminated river. Overall, in situ microbial community could provide a useful tool for monitoring and assessing geo-environmental stressors in Tl-polluted river sediments.  相似文献   

8.
9.
10.
Reviews in Environmental Science and Bio/Technology - Soil is a complex and dynamic network of different biological processes linked in an intricate manner to facilitate effective ecosystem...  相似文献   

11.
12.
13.
Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35 degrees C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.  相似文献   

14.
Microarrays are useful tools for detecting and quantifying specific functional and phylogenetic genes in natural microbial communities. In order to track uncultivated microbial genotypes and their close relatives in an environmental context, we designed and implemented a 'genome-proxy' microarray that targets microbial genome fragments recovered directly from the environment. Fragments consisted of sequenced clones from large-insert genomic libraries from microbial communities in Monterey Bay, the Hawaii Ocean Time-series station ALOHA, and Antarctic coastal waters. In a prototype array, we designed probe sets to 13 of the sequenced genome fragments and to genomic regions of the cultivated cyanobacterium Prochlorococcus MED4. Each probe set consisted of multiple 70-mers, each targeting an individual open reading frame, and distributed along each approximately 40-160 kbp contiguous genomic region. The targeted organisms or clones, and close relatives, were hybridized to the array both as pure DNA mixtures and as additions of cells to a background of coastal seawater. This prototype array correctly identified the presence or absence of the target organisms and their relatives in laboratory mixes, with negligible cross-hybridization to organisms having 相似文献   

15.
16.
17.
18.
Deeply buried marine sediments harbour a large fraction of all prokaryotes on Earth but it is still unknown which phylogenetic and physiological microbial groups dominate the deep biosphere. In this study real-time PCR allowed a comparative quantitative microbial community analysis in near-surface and deeply buried marine sediments from the Peru continental margin. The 16S rRNA gene copy numbers of prokaryotes and Bacteria were almost identical with a maximum of 10(8)-10(10) copies cm(-3) in the near-surface sediments. Archaea exhibited one to three orders of magnitude lower 16S rRNA gene copy numbers. The 18S rRNA gene of Eukarya was always at least three orders of magnitude less abundant than the 16S rRNA gene of prokaryotes. The 16S rRNA gene of the Fe(III)- and Mn(IV)-reducing bacterial family Geobacteraceae and the dissimilatory (bi)sulfite reductase gene (dsrA) of sulfate-reducing prokaryotes were abundant with 10(6)-10(8) copies cm(-3) in near-surface sediments but showed lower numbers and an irregular distribution in the deep sediments. The copy numbers of all genes decreased with sediment depth exponentially. The depth gradients were steeper for the gene copy numbers than for numbers of total prokaryotes (acridine orange direct counts), which reflects the ongoing degradation of the high-molecular-weight DNA with sediment age and depth. The occurrence of eukaryotic DNA also suggests DNA preservation in the deeply buried sediments.  相似文献   

19.
A simple isoelectric focusing (IEF) method for whole bacterial cells was developed. In a pH gradient of 2 to 10 and an electric field of 11.5 V cm-1, mixtures of cells from the three different bacterial strains Chlorobium limicola 6230, Pseudomonas stutzeri DSM 50227, and Micrococcus luteus DSM 20030 could be separated. A density gradient of Ficoll prevented convective currents in the system. The method was tested with a concentrated mixture of bacteria from a shallow eutrophic lake and yielded up to 10 different bands. Species composition in each IEF band was analyzed by PCR plus denaturing gradient gel electrophoresis (DGGE). Each IEF band exhibited a different species composition. After the separation of cells by IEF three times more 16S ribosomal DNA signals could be detected by DGGE than in the unfractionated natural bacterial community. It is concluded that the resolution of these molecular biological methods is significantly enhanced if cells are first separated by IEF. At the same time, the IEF fractions are enriched for certain species, which can be used in subsequent cultivation experiments.  相似文献   

20.
Current metagenomic approaches to the study of complex microbial consortia provide a glimpse into the community metabolism and occasionally allow genomic assemblies for the most abundant organisms. However, little information is gained for the members of the community present at low frequencies, especially those representing yet-uncultured taxa, which include the bulk of the diversity present in most environments. Here we used phylogenetically directed cell separation by fluorescence in situ hybridization and flow cytometry, followed by amplification and sequencing of a fraction of the genomic DNA of several bacterial cells that belong to the TM7 phylum. Partial genomic assembly allowed, for the first time, a look into the evolution and potential metabolism of a soil representative from this group of organisms for which there are no species in stable laboratory cultures. Genomic reconstruction from targeted cells of uncultured organisms isolated directly from the environment represents a powerful approach to access any specific members of a community and an alternative way to assess the community's metabolic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号