首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cullin proteins assemble a large number of RING E3 ubiquitin ligases and regulate various physiological processes. Covalent modification of cullins by the ubiquitin-like protein NEDD8 activates cullin ligases through an as yet undefined mechanism. We show here that p120(CAND1) selectively binds to unneddylated CUL1 and is dissociated by CUL1 neddylation. CAND1 formed a ternary complex with CUL1 and ROC1. CAND1 dissociated SKP1 from CUL1 and inhibited SCF ligase activity in vitro. Suppression of CAND1 in vivo increased the level of the CUL1-SKP1 complex. We suggest that by restricting SKP1-CUL1 interaction, CAND1 regulated the assembly of productive SCF ubiquitin ligases, allowing a common CUL1-ROC core to be utilized by a large number of SKP1-F box-substrate subcomplexes.  相似文献   

2.
Lysine 48-linked polyubiquitin chains are the principle signal for targeting proteins for degradation by the 26 S proteasome. Here we report that the conjugation of Nedd8 to ROC1-CUL1, a subcomplex of the SCF-ROC1 E3 ubiquitin ligase, selectively stimulates Cdc34-catalyzed lysine 48-linked multiubiquitin chain assembly. We have further demonstrated that separate regions within the human Cdc34 C-terminal tail are responsible for multiubiquitin chain assembly and for physical interactions with the Nedd8-conjugated ROC1-CUL1 to assemble extensive ubiquitin polymers. Structural comparisons between Nedd8 and ubiquitin reveal that six charged residues (Lys4, Glu12, Glu14, Arg25, Glu28, and Glu31) are uniquely present on the surface of Nedd8. Replacement of each of the six residues with the corresponding amino acid in ubiquitin decreases the ability of Nedd8 to activate the ubiquitin ligase activity of ROC1-CUL1. Moreover, maintenance of the proper charges at amino acid positions 14 and 25 are necessary for retaining wild type levels of activity, whereas introduction of the opposite charges at these positions abolishes the Nedd8 activation function. These results suggest that Nedd8 charged surface residues mediate the activation of ROC1-CUL1 to specifically support Cdc34-catalyzed ubiquitin polymerization.  相似文献   

3.
HOIL‐1, a component of the linear ubiquitin chain assembly complex (LUBAC), ubiquitylates serine and threonine residues in proteins by esterification. Here, we report that mice expressing an E3 ligase‐inactive HOIL‐1[C458S] mutant accumulate polyglucosan in brain, heart and other organs, indicating that HOIL‐1’s E3 ligase activity is essential to prevent these toxic polysaccharide deposits from accumulating. We found that HOIL‐1 monoubiquitylates glycogen and α1:4‐linked maltoheptaose in vitro and identify the C6 hydroxyl moiety of glucose as the site of ester‐linked ubiquitylation. The monoubiquitylation of maltoheptaose was accelerated > 100‐fold by the interaction of Met1‐linked or Lys63‐linked ubiquitin oligomers with the RBR domain of HOIL‐1. HOIL‐1 also transferred pre‐formed ubiquitin oligomers to maltoheptaose en bloc, producing polyubiquitylated maltoheptaose in one catalytic step. The Sharpin and HOIP components of LUBAC, but not HOIL‐1, bound to unbranched and infrequently branched glucose polymers in vitro, but not to highly branched mammalian glycogen, suggesting a potential function in targeting HOIL‐1 to unbranched glucosaccharides in cells. We suggest that monoubiquitylation of unbranched glucosaccharides may initiate their removal from cells, preventing precipitation as polyglucosan.  相似文献   

4.
DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase   总被引:2,自引:0,他引:2  
Lee J  Zhou P 《Molecular cell》2007,26(6):775-780
The CUL4-DDB1 ubiquitin ligase regulates cell proliferation, survival, DNA repair, and genomic integrity through targeted ubiquitination of key regulators, yet the substrate receptors that dictate the specificity of this ubiquitination machinery have been largely unknown. Recent work identified a family of DDB1 and CUL4-associated factors (DCAFs) as substrate receptors, implicating a broad spectrum of cellular processes regulated by CUL4-DDB1.  相似文献   

5.
Although cullin-1 neddylation is crucial for the activation of SCF ubiquitin E3 ligases, the underlying mechanisms for NEDD8-mediated activation of SCF remain unclear. Here we demonstrate by NMR and mutational studies that NEDD8 binds the ubiquitin E2 (UBC4), but not NEDD8 E2 (UBC12). Our data imply that NEDD8 forms an active platform on the SCF complex for selective recruitment of ubiquitin-charged E2s in collaboration with RBX1, and thereby upregulates the E3 activity.  相似文献   

6.
Recent genetic studies have documented a pivotal growth-regulatory role played by the Cullin 7 (CUL7) E3 ubiquitin ligase complex containing the Fbw8-substrate-targeting subunit, Skp1, and the ROC1 RING finger protein. In this report, we identified insulin receptor substrate 1 (IRS-1), a critical mediator of the insulin/insulin-like growth factor 1 signaling, as a proteolytic target of the CUL7 E3 ligase in a manner that depends on mammalian target of rapamycin and the p70 S6 kinase activities. Interestingly, while embryonic fibroblasts of Cul7-/- mice were found to accumulate IRS-1 and exhibit increased activation of IRS-1's downstream Akt and MEK/ERK pathways, these null cells grew poorly and displayed phenotypes reminiscent of those associated with oncogene-induced senescence. Taken together, our findings demonstrate a key role for the CUL7 E3 in targeting IRS-1 for degradation, a process that may contribute to the regulation of cellular senescence.  相似文献   

7.
Abstract

The ATP Binding Cassette transporter ABCB1 can export the neurotoxic peptide β-amyloid from endothelial cells that line the blood-brain barrier (BBB). This has the potential to lower cerebral levels of β-amyloid, but ABCB1 expression in the BBB appears to be progressively reduced in patients with Alzheimer’s disease. The surface density of many membrane proteins is regulated by ubiquitination catalyzed by ubiquitin E3 ligases. In brain capillaries of mice challenged with β-amyloid ex vivo, we show that the level of the ubiquitin ligase Nedd4 increases concomitant with reduction in Abcb1. In vitro we show that human ABCB1 is a substrate for human NEDD4-1 ligase. Recombinant ABCB1 was purified from Sf21 insect cells and incubated with recombinant NEDD4-1 purified from Escherichia coli. The treated ABCB1 had reduced mobility on SDS-PAGE, and mass spectrometry identified eight lysine residues, K271, K272, K575, K685, K877, K885, K887 and K1062 that were ubiquitinated by NEDD4-1. Molecular modelling showed that all of the residues are exposed on the surface of the intracellular domains of ABCB1. K877, K885 and K887 in particular, are located in the intracellular loop of transmembrane helix 10 (TMH10) in close proximity, in the tertiary fold, to a putative NEDD4-1 binding site in the intracellular helix extending from TMH12 (PxY motif, residues 996–998). Transient expression of NEDD4-1 in HEK293 Flp-In cells stably expressing ABCB1 was shown to reduce the surface density of the transporter. Together, the data identify this ubiquitin ligase as a potential target for intervention in the pathophysiology of Alzheimer’s disease.  相似文献   

8.
The SCF-ROC1 ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase complex targets the ubiquitination and subsequent degradation of protein substrates required for the regulation of cell cycle progression and signal transduction pathways. We have previously shown that ROC1-CUL1 is a core subassembly within the SCF-ROC1 complex, capable of supporting the polymerization of ubiquitin. This report describes that the CUL1 subunit of the bacterially expressed, unmodified ROC1-CUL1 complex is conjugated with Nedd8 at Lys-720 by HeLa cell extracts or by a purified Nedd8 conjugation system (consisting of APP-BP1/Uba3, Ubc12, and Nedd8). This covalent linkage of Nedd8 to CUL1 is both necessary and sufficient to markedly enhance the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. A mutation of Lys-720 to arginine in CUL1 eliminates the Nedd8 modification, abolishes the activation of the ROC1-CUL1 ubiquitin ligase complex, and significantly reduces the ability of SCF(HOS/beta)(-TRCP)-ROC1 to support the ubiquitination of phosphorylated IkappaBalpha. Thus, although regulation of the SCF-ROC1 action has been previously shown to preside at the level of recognition of a phosphorylated substrate, we demonstrate that Nedd8 is a novel regulator of the efficiency of polyubiquitin chain synthesis and, hence, promotes rapid turnover of protein substrates.  相似文献   

9.
The conserved RING-H2 finger of ROC1 is required for ubiquitin ligation   总被引:1,自引:0,他引:1  
ROC1 is a common component of a large family of ubiquitin E3 ligases that regulate cell cycle progression and signal transduction pathways. Here we present evidence suggesting that a conserved RING-H2 structure within ROC1 is critical for its ubiquitin ligation function. Mercury-containing sulfhydryl modification agents (rho-hydroxymercuribenzoate and mercuric chloride) irreversibly inhibit the ROC1-CUL1 ubiquitin ligase activity without disrupting the complex. Consistent with this, these reagents also eliminate the ability of the Skp1-CUL1-HOS-ROC1 E3 ligase complex to support the ubiquitination of IkappaBalpha. Site-directed mutagenesis analysis identifies RING-H2 finger residues Cys(42), Cys(45), Cys(75), His(77), His(80), Cys(83), Cys(94), and Asp(97) as being essential for the ROC1-dependent ubiquitin ligase activity. Furthermore, C42S/C45S and H80A mutations reduce the ability of ROC1 to interact with CUL1 in transfected cells and diminish the capacity of ROC1-CUL1 to form a stable complex with Cdc34 in vitro. However, C75S, H77A, C94S, and D97A substitutions have no detectable effect on ROC1 binding activities. Thus, the ROC1 RING-H2 finger may possess multiple biochemical properties that include stabilizing an interaction with CUL1 and recruiting Cdc34. A possible role of the RING finger in facilitating the Ub transfer reaction is discussed.  相似文献   

10.
Mdm2, a key negative regulator of the p53 tumor suppressor, is a RING-type E3 ubiquitin ligase. The Mdm2 RING domain can be biochemically fractionated into two discrete species, one of which exists as higher order oligomers that are visible by electron microscopy, whereas the other is a monomer. Both fractions are ATP binding and E3 ligase activity competent, although the oligomeric fraction exhibits lower dependence on the E2 component of ubiquitin polymerization reactions. The extreme C-terminal five amino acids of Mdm2 are essential for E3 ligase activity in vivo and in vitro, as well as for oligomeric assembly of the protein. A single residue (phenylalanine 490) in that sequence is critical for both properties. Interestingly, the C-terminus of the Mdm2 homologue, MdmX (itself inert as an E3 ligase), can fully substitute for the equivalent segment of Mdm2 and restore its E3 activity. We further show that the Mdm2 C-terminus is involved in intramolecular interactions and can set up a platform for direct protein-protein interactions with the E2.  相似文献   

11.
Precursor forms of vacuolar proteins with transmembrane domains, such as the carboxypeptidase S Cps1p and the polyphosphatase Phm5p, are selectively sorted in endosomal compartments to vesicles that invaginate, budding into the lumen of the late endosomes, resulting in the formation of multivesicular bodies (MVBs). These proteins are then delivered to the vacuolar lumen following fusion of the MVBs with the vacuole. The sorting of Cps1p and Phm5p to these structures is mediated by ubiquitylation, and in doa4 mutant cells, which have reduced level of free ubiquitin, these proteins are missorted to the vacuolar membrane. A RING-finger ubiquitin ligase Tul1p has been shown to participate in the ubiquitylation of Cps1p and Phm5p. We show here that the HECT-ubiquitin ligase Rsp5p is also required for the ubiquitylation of these proteins, and therefore for their sorting to MVBs. Rsp5p is an essential ubiquitin ligase containing an N-terminal C2 domain followed by three WW domains, and a C-terminal catalytic HECT domain. In cells with low levels of Rsp5p (npi1 mutant cells), vacuolar hydrolases do not reach the vacuolar lumen and are instead missorted to the vacuolar membrane. The C2 domain and both the second and third WW domains of Rsp5p are important determinants for sorting to MVBs. Ubiquitylation of Cps1p was strongly reduced in the npi1 mutant strain and ubiquitylation was completely abolished in the npi1 tul1Delta double mutant. These data demonstrate that Rsp5p plays a novel and key role in intracellular trafficking, and extend the currently very short list of substrates ubiquitylated in vivo by several different ubiquitin ligases acting cooperatively.  相似文献   

12.
13.
We have identified two highly conserved RING finger proteins, ROC1 and ROC2, that are homologous to APC11, a subunit of the anaphase-promoting complex. ROC1 and ROC2 commonly interact with all cullins while APC11 specifically interacts with APC2, a cullin-related APC subunit. YeastROC1 encodes an essential gene whose reduced expression resulted in multiple, elongated buds and accumulation of Sic1p and Cln2p. ROC1 and APC11 immunocomplexes can catalyze isopeptide ligations to form polyubiquitin chains in an E1- and E2-dependent manner. ROC1 mutations completely abolished their ligase activity without noticeable changes in associated proteins. Ubiquitination of phosphorylated I kappa B alpha can be catalyzed by the ROC1 immunocomplex in vitro. Hence, combinations of ROC/APC11 and cullin proteins proteins potentially constitute a wide variety of ubiquitin ligases.  相似文献   

14.
We describe a purified ubiquitination system capable of rapidly catalyzing the covalent linkage of polyubiquitin chains onto a model substrate, phosphorylated IkappaBalpha. The initial ubiquitin transfer and subsequent polymerization steps of this reaction require the coordinated action of Cdc34 and the SCF(HOS/beta-TRCP)-ROC1 E3 ligase complex, comprised of four subunits (Skp1, cullin 1 [CUL1], HOS/beta-TRCP, and ROC1). Deletion analysis reveals that the N terminus of CUL1 is both necessary and sufficient for binding Skp1 but is devoid of ROC1-binding activity and, hence, is inactive in catalyzing ubiquitin ligation. Consistent with this, introduction of the N-terminal CUL1 polypeptide into cells blocks the tumor necrosis factor alpha-induced and SCF-mediated degradation of IkappaB by forming catalytically inactive complexes lacking ROC1. In contrast, the C terminus of CUL1 alone interacts with ROC1 through a region containing the cullin consensus domain, to form a complex fully active in supporting ubiquitin polymerization. These results suggest the mode of action of SCF-ROC1, where CUL1 serves as a dual-function molecule that recruits an F-box protein for substrate targeting through Skp1 at its N terminus, while the C terminus of CUL1 binds ROC1 to assemble a core ubiquitin ligase.  相似文献   

15.
Arabidopsis COP1 is a negative regulator of photomorphogenesis, which targets HY5, a positive regulator of photomorphogenesis, for degradation via the proteasome pathway in the absence of light. COP1 and its interactive partner CIP8 both possess RING finger motifs, characteristic of some E3 ubiquitin ligases. Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in vitro. CIP8 exhibits a strong interaction with the E2 enzyme AtUBC8 through its N-terminal domain. Phosphorylation of HY5 by casein kinase II requires the beta subunit 2, but does not affect HY5's susceptibility to ubiquitination. The RING domain of CIP8 is required but is not sufficient for ubiquitin ligase activity. Although the RING domain of CIP8 interacts with the RING domain of COP1, addition of recombinant COP1 fails to affect CIP8's ubiquitin ligase activity towards HY5 in vitro. However, recombinant COP1 can pull-down native CIP8 from the extract of dark-grown seedlings, but not from the extract of light-grown seedlings in a column-binding assay, implying a requirement for light-regulated modification in vivo. Our data suggest that CIP8 can form a minimal ubiquitin ligase in co-operation with the E2 enzyme AtUBC8. It is possible that the AtUBC8-CIP8 module might interact with COP1 in vivo, thereby participating in proteasome-mediated degradation of HY5.  相似文献   

16.
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is the cause of the familial VHL disease and most sporadic renal clear-cell carcinomas (RCC). pVHL has been shown to play a role in the destruction of hypoxia-inducible factor alpha (HIF-alpha) subunits via ubiquitin-mediated proteolysis and in the regulation of fibronectin matrix assembly. Although most disease-causing pVHL mutations hinder the regulation of the HIF pathway, every disease-causing pVHL mutant tested to date has failed to promote the assembly of the fibronectin matrix, underscoring its potential importance in VHL disease. Here, we report that a ubiquitin-like molecule called NEDD8 covalently modifies pVHL. A nonneddylateable pVHL mutant, while retaining its ability to ubiquitylate HIF, failed to bind to and promote the assembly of the fibronectin matrix. Expression of the neddylation-defective pVHL in RCC cells, while restoring the regulation of HIF, failed to promote the differentiated morphology in a three-dimensional growth assay and was insufficient to suppress the formation of tumors in SCID mice. These results suggest that NEDD8 modification of pVHL plays an important role in fibronectin matrix assembly and that in the absence of such regulation, an intact HIF pathway is insufficient to prevent VHL-associated tumorigenesis.  相似文献   

17.
The SCF ubiquitin E3 ligase regulates ubiquitin-dependent proteolysis of many regulatory proteins such as p27(Kip1), IkappaB, and beta-catenin. We report the isolation of a CUL1 binding protein, p120(CAND1). We found the majority of CUL1 is in a complex with CAND1 and ROC1 independent of SKP1 and F box protein SKP2. Both in vivo and in vitro, CAND1 prevents the binding of SKP1 and SKP2 to CUL1 while dissociation of CAND1 from CUL1 promotes the reverse reaction. Neddylation of CUL1 or the presence of SKP1 and ATP causes CAND1 dissociation. Our data suggest that CAND1 regulates the formation of the SCF complex, and its dissociation from CUL1 is coupled with the incorporation of F box proteins into the SCF complex, causing their destabilization.  相似文献   

18.
Biotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.  相似文献   

19.
A central requirement to maintain genome stability is that DNA replication must be tightly controlled so that genomic DNA is replicated only once in a single cell cycle. The prevention of DNA re-replication is achieved by restricting the assembly of pre-replicative complexes (pre RCs) to the period prior to S phase, and ensuring that pre-RCs cannot reform during S phase. The regulation of the replication licensing factors Cdt1 and Cdc6 during S phase is critical to prevent the reformation of pre-RCs. In yeast, Cdc6 is degraded during S phase to block DNA re-replication. In mammals, Cdc6 is exported from the nucleus; however, a variable percentage of endogenous Cdc6 remains nuclear throughout S phase. The perdurance of nuclear Cdc6 has led a number of groups to question whether the nuclear export of Cdc6 is relevant in restricting its activity. A recent study in C. elegans shows that the nuclear export of Cdc6 is in fact critical to prevent DNA re-replication. This work also identifies the CUL-4 ubiquitin ligase as a master regulator that controls DNA replication by regulating both Cdt1 and Cdc6 replication licensing factors.  相似文献   

20.
The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this reason, we systematically investigated ubiquitin-protein ligasess from the homologous to E6-AP carboxy terminus (HECT) family for potential individual roles in nuclear transport in Saccharomyces cerevisiae . Here we report that Rsp5, an essential yeast ubiquitin ligase involved in many cellular functions, when deleted or mutated in ligase activity, blocks the nuclear export of mRNAs. Affected messenger RNAs include both total poly(A)+ mRNA and heat-shock mRNAs. Mutation of Rsp5 does not affect nuclear protein import or export. Deletion of RSP5 blocks mRNA export, even under conditions where its essential role in unsaturated fatty acids biosynthesis is bypassed. Using domain mapping, we find that the ligase activity is required for proper mRNA export, indicating that ubiquitination by Rsp5 acts directly or indirectly to affect RNA export. The finding that Rsp5p ligase mutations cause a more pronounced defect at high temperatures suggests that ubiquitination of transport factors by Rsp5p may also be essential during stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号