首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The purpose of the present study was to develop a computationally efficient finite element model that could be useful for parametric analysis of the biphasic poroviscoelastic (BPVE) behavior of articular cartilage under various loading conditions. The articular cartilage was modeled as the BPVE mixture of a porous, linear viscoelastic, and incompressible solid and an inviscid and incompressible fluid. A finite element (FE) formulation of the BPVE model was developed using two different algorithms, the continuous and discrete spectrum relaxation functions for the viscoelasticity of the solid matrix. These algorithms were applied to the creep and stress relaxation responses to the confined compression of articular cartilage, and a comparison of their performances was made. It was found that the discrete spectrum algorithm significantly saved CPU time and memory, as compared to the continuous spectrum algorithm. The consistency analysis for the present FE formulation was performed in comparison with the IMSL, a commercially available numerical software package. It was found that the present FE formulation yielded consistent results in predicting model behavior, whereas the IMSL subroutine produced inconsistent results in the velocity field, and thereby in the strain calculation.  相似文献   

2.
The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel(R) CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G"), storage modulus (G'), and loss tangent (tan delta) of these creams were measured using a TA Instruments AR 1000 Rheometer and compared to a commercially available formulation. Continuous flow test to determine the yield stress and thixotropic behavior, and dynamic mechanical tests for determining the linear viscosity time sweep data, were performed. Drug release from the various formulations was studied using an Enhancer TM Cell assembly. Formulations containing 1% and 2% Avicel CL-611 had relative viscosity, yield stress, and thixotropic values that were similar to those of the commercial formulation. The elastic modulus (G') of the 1% and 2% formulation was relatively high and did not cross the loss modulus (G"), indicating that the gels were strong. In the commercial formulation, G' increased after preshearing and broke down after 600 seconds. The strain sweep tests showed that for all formulations containing Avicel CL-611, the G' was above G" with a good distance between them. The gel strength and the predominance of G' can be ranked 6% > 4% > 2%. The strain profiles for the 1% and 2% formulations were similar to those of the commercial formulation. The delta values for the 1% and 2% formulations were similar, and the formulations containing 4% Avicel CL-611 had lower delta values, indicating greater elasticity. Drug release from the commercial preparation was fastest compared to the formulations prepared using Avicel CL-611, a correlation with the viscoelastic properties. It was found that viscoelastic data, especially the strain sweep profiles of products containing Avicel CL-611 1% and 2%, correlated with the commercial formulation. Rheological tests that measure the viscosity, yield stress, thixotropic behavior, other oscillatory parameters such as G' and G" are necessary tools in predicting performance of semisolids.  相似文献   

3.
Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8s(-1)). Both time- and strain-dependent behavior were predicted accurately (R2>0.96) for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.  相似文献   

4.
Li LP  Herzog W 《Biorheology》2004,41(3-4):181-194
The relative importance of fluid-dependent and fluid-independent transient mechanical behavior in articular cartilage was examined for tensile and unconfined compression testing using a fibril reinforced model. The collagen matrix of articular cartilage was modeled as viscoelastic using a quasi-linear viscoelastic formulation with strain-dependent elastic modulus, while the proteoglycan matrix was considered as linearly elastic. The collagen viscoelastic properties were obtained by fitting experimental data from a tensile test. These properties were used to investigate unconfined compression testing, and the sensitivity of the properties was also explored. It was predicted that the stress relaxation observed in tensile tests was not caused by fluid pressurization at the macroscopic level. A multi-step tensile stress relaxation test could be approximated using a hereditary integral in which the elastic fibrillar modulus was taken to be a linear function of the fibrillar strain. Applying the same formulation to the radial fibers in unconfined compression, stress relaxation could not be simulated if fluid pressurization were absent. Collagen viscoelasticity was found to slightly weaken fluid pressurization in unconfined compression, and this effect was relatively more significant at moderate strain rates. Therefore, collagen viscoelasticity appears to play an import role in articular cartilage in tensile testing, while fluid pressurization dominates the transient mechanical behavior in compression. Collagen viscoelasticity plays a minor role in the mechanical response of cartilage in unconfined compression if significant fluid flow is present.  相似文献   

5.
A nonlinear viscoelastic finite element model of ultra-high molecular weight polyethylene (UHMWPE) was developed in this study. Eight cylindrical specimens were machined from ram extruded UHMWPE bar stock (GUR 1020) and tested under constant compression at 7% strain for 100 sec. The stress strain data during the initial ramp up to 7% strain was utilized to model the "instantaneous" stress-strain response using a Mooney-Rivlin material model. The viscoelastic behavior was modeled using the time-dependent relaxation in stress seen after the initial maximum stress was achieved using a stored energy formulation. A cylindrical model of similar dimensions was created using a finite element analysis software program. The cylinder was made up of hexahedral elements, which were given the material properties utilizing the "instantaneous" stress-strain curve and the energy-relaxation curve obtained from the experimental data. The cylinder was compressed between two flat rigid bodies that simulated the fixtures of the testing machine. Experimental stress-relaxation, creep and dynamic testing data were then used to validate the model. The mean error for predicted versus experimental data for stress relaxation at different strain levels was 4.2%. The mean error for the creep test was 7% and for dynamic test was 5.4%. Finally, dynamic loading in a hip arthroplasty was modeled and validated experimentally with an error of 8%. This study establishes a working finite element material model of UHMWPE that can be utilized to simulate a variety of postoperative arthroplasty conditions.  相似文献   

6.
This study investigated the abilities of the linear biphasic poroviscoelastic (BPVE) model and the linear biphasic poroelastic (BPE) model to simulate the effect of variable ramp strain rates on the unconfined compression stress relaxation response of articular cartilage. Curve fitting of experimental data showed that the BPVE model was able to successfully account for the ramp strain rate-dependent viscoelastic behavior of articular cartilage under unconfined compression, while the BPE model was able to account for the complete viscoelastic response at a slow strain rate, but only the long-term viscoelastic response at faster strain rates. We concluded that the short-term viscoelastic behavior of articular cartilage, when subjected to a fast ramp strain rate, is primarily governed by a fluid flow-independent (intrinsic) viscoelastic mechanism, whereas the long-term viscoelastic behavior is governed by a fluid flow-dependent (biphasic) viscoelastic mechanism. Furthermore, a linear viscoelastic representation of the solid stress was found to be a valid model assumption for the simulation of ramp strain rate-dependent relaxation behaviors of articular cartilage within the range of ramp strain rates investigated.  相似文献   

7.
Recent studies have questioned the ability of the quasi-linear viscoelastic (QLV) model to predict stresses and strains in response to loading conditions other than those used to fit the model. The objective of this study was to evaluate the ability of several models in the literature to predict the elastic stress response of ligament and tendon at strain levels higher than the levels used to fit the model. The constitutive models were then used to evaluate the ability of the QLV model to predict the overall stress response during stress relaxation. The models expressing stress as an exponential function of strain significantly overestimated stress when used at higher strain levels. The polynomial formulation of the Mooney–Rivlin model more accurately predicted the stress–strain behavior of ligament and tendon. The results demonstrate that the ability of the QLV model to accurately predict the stress-relaxation response is dependent in part on the accuracy of the function used to model the elastic response of the soft tissue.  相似文献   

8.
A three-dimensional viscoelastic finite element model is developed for cell micromanipulation by magnetocytometry. The model provides a robust tool for analysis of detailed strain/stress fields induced in the cell monolayer produced by forcing one microbead attached atop a single cell or cell monolayer on a basal substrate. Both the membrane/cortex and the cytoskeleton are modeled as Maxwell viscoelastic materials, but the structural effect of the membrane/cortex was found to be negligible on the timescales corresponding to magnetocytometry. Numerical predictions are validated against experiments performed on NIH 3T3 fibroblasts and previous experimental work. The system proved to be linear with respect to cytoskeleton mechanical properties and bead forcing. Stress and strain patterns were highly localized, suggesting that the effects of magnetocytometry are confined to a region extending <10 microm from the bead. Modulation of cell height has little effect on the results, provided the monolayer is >5 micro m thick. NIH 3T3 fibroblasts exhibited a viscoelastic timescale of approximately 1 s and a shear modulus of approximately 1000 Pa.  相似文献   

9.
Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis. Stress-strain-time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell-Weichert model. The fibrils showed an elastic modulus of 123 ± 46 MPa. The time-dependent behavior was well fit using the two-time-constant Maxwell-Weichert model with a fast time response of 7 ± 2 s and a slow time response of 102 ± 5 s. The fibrillar relaxation time was smaller than literature values for tissue-level relaxation time, suggesting that tissue relaxation is dominated by noncollagenous components (e.g., proteoglycans). Each specimen was tested three times, and the only statistically significant difference found was that the elastic modulus is larger in the first test than in the subsequent two tests, indicating that viscous properties of collagen fibrils are not sensitive to the history of previous tests.  相似文献   

10.
A new and efficient method for numerical solution of the continuous spectrum biphasic poroviscoelastic (BPVE) model of articular cartilage is presented. Development of the method is based on a composite Gauss–Legendre quadrature approximation of the continuous spectrum relaxation function that leads to an exponential series representation. The separability property of the exponential terms in the series is exploited to develop a numerical scheme that can be reduced to an update rule requiring retention of the strain history at only the previous time step. The cost of the resulting temporal discretization scheme is O(N) for N time steps. Application and calibration of the method is illustrated in the context of a finite difference solution of the one-dimensional confined compression BPVE stress-relaxation problem. Accuracy of the numerical method is demonstrated by comparison to a theoretical Laplace transform solution for a range of viscoelastic relaxation times that are representative of articular cartilage.  相似文献   

11.
This study proposes the quasi-linear viscoelastic (QLV) model to characterize the time dependent mechanical behavior of poly(vinyl alcohol) (PVA) sponges. The PVA sponges have implications in many viscoelastic soft tissues, including cartilage, liver, and kidney as an implant. However, a critical barrier to the use of the PVA sponge as tissue replacement material is a lack of sufficient study on its viscoelastic mechanical properties. In this study, the nonlinear mechanical behavior of a fabricated PVA sponge is investigated experimentally and computationally using relaxation and stress failure tests as well as finite element (FE) modeling. Hyperelastic strain energy density functions, such as Yeoh and Neo-Hookean, are used to capture the mechanical behavior of PVA sponge at ramp part, and viscoelastic model is used to describe the viscose behavior at hold part. Hyperelastic material constants are obtained and their general prediction ability is verified using FE simulations of PVA tensile experiments. The results of relaxation and stress failure tests revealed that Yeoh material model can define the mechanical behavior of PVA sponge properly compared with Neo-Hookean one. FE modeling results are also affirmed the appropriateness of Yeoh model to characterize the mechanical behavior of PVA sponge. Thus, the Yeoh model can be used in future biomechanical simulations of the spongy biomaterials. These results can be utilized to understand the viscoelastic behavior of PVA sponges and has implications for tissue engineering as scaffold.  相似文献   

12.
13.
Coronary artery disease is responsible for almost 30% of all deaths worldwide. The saphenous vein and umbilical vein (UV) are the most common veins using for treatment as a coronary artery bypass graft (CABG). The mechanical properties of UV belonging to its long-term patency for CABG are very important. However, there is a lack of knowledge on the linear elastic and nonlinear hyperelastic mechanical properties of the UV. In this study, three stress definitions (second Piola–Kichhoff stress, engineering stress and true stress) and four strain definitions (Almansi–Hamel strain, Green–St Venant strain, engineering strain and true strain) are used to determine the elastic modulus, maximum stress and strain of eight human UVs under circumferential loading. The nonlinear mechanical behaviour of the UV is computationally investigated using Mooney–Rivlin hyperelastic model. A numerical finite element analysis is also carried out to simulate the constitutive modelling versus its numerical results. The results show that the Almansi–Hamel strain definition overestimates the elastic modulus while Green–St Venant strain definition underestimates the elastic modulus at different stress definitions. The true stress–true strain definition, which gives more accurate measurements of the tissue's response using the instantaneous values, reveals the Young's modulus and maximum stress of 2.18 and 6.01 MPa, respectively. The Mooney–Rivlin material model is well represented by the nonlinear mechanical behaviour of the UV. The findings of this study could have implications not only for understanding the extension and rupture mechanism of UV but also for interventions and surgeries, including balloon angioplasty, bypass and stenting.  相似文献   

14.
Soft tissues exhibit highly nonlinear rate and time-dependent stress-strain behaviour. Strain and strain rate dependencies are often modelled using a hyperelastic model and a discrete (standard linear solid) or continuous spectrum (quasi-linear) viscoelastic model, respectively. However, these models are unable to properly capture the materials characteristics because hyperelastic models are unsuited for time-dependent events, whereas the common viscoelastic models are insufficient for the nonlinear and finite strain viscoelastic tissue responses. The convolution integral based models can demonstrate a finite viscoelastic response; however, their derivations are not consistent with the laws of thermodynamics. The aim of this work was to develop a three-dimensional finite hyper-viscoelastic model for soft tissues using a thermodynamically consistent approach. In addition, a nonlinear function, dependent on strain and strain rate, was adopted to capture the nonlinear variation of viscosity during a loading process. To demonstrate the efficacy and versatility of this approach, the model was used to recreate the experimental results performed on different types of soft tissues. In all the cases, the simulation results were well matched (R20.99) with the experimental data.  相似文献   

15.
In this paper we introduce a continuous time stochastic neurite branching model closely related to the discrete time stochastic BES-model. The discrete time BES-model is underlying current attempts to simulate cortical development, but is difficult to analyze. The new continuous time formulation facilitates analytical treatment thus allowing us to examine the structure of the model more closely. We derive explicit expressions for the time dependent probabilities p(γ,t) for finding a tree γ at time t, valid for arbitrary continuous time branching models with tree and segment dependent branching rates. We show, for the specific case of the continuous time BES-model, that as expected from our model formulation, the sums needed to evaluate expectation values of functions of the terminal segment number μ(f(n),t) do not depend on the distribution of the total branching probability over the terminal segments. In addition, we derive a system of differential equations for the probabilities p(n,t) of finding n terminal segments at time t. For the continuous BES-model, this system of differential equations gives direct numerical access to functions only depending on the number of terminal segments, and we use this to evaluate the development of the mean and standard deviation of the number of terminal segments at a time t. For comparison we discuss two cases where mean and variance of the number of terminal segments are exactly solvable. Then we discuss the numerical evaluation of the S-dependence of the solutions for the continuous time BES-model. The numerical results show clearly that higher S values, i.e. values such that more proximal terminal segments have higher branching rates than more distal terminal segments, lead to more symmetrical trees as measured by three tree symmetry indicators.  相似文献   

16.
Despite the significant role ligament viscoelasticity plays in functional spinal biomechanics, relatively few studies have been performed to develop constitutive models that explicitly characterize this complex behavior. Unfortunately, the application and interpretation of these previous models are limited due to the use of simplified (quasi-linear) viscoelastic formulations or characterization techniques that have been shown to affect the predictive accuracy of the fitted coefficients. In order to surmount these previous limitations, the current study presents the application of a novel fitting technique (applied to stress relaxation experiments) and nonlinear viscoelastic constitutive formulation to human cervical spine anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL) and ligamentum flavum (LF). The fitted coefficients were validated by quantifying the ability of the constitutive equation to predict an independent cyclic data set across multiple physiologic strain amplitudes and frequencies. The resulting validated constitutive formulation indicated that the strain-dependent viscoelastic behavior of the longitudinal ligaments (ALL and PLL) was dominated by both the short-term (t=0.1s) and the steady-state (as t→∞) behavior. Conversely, the LF exhibited consistent relaxation behavior across the investigated temporal spectrum. From these data, it can be hypothesized that the unique strain-dependent temporal behavior of these spinal ligaments may be a functional adaptation that minimizes muscular expenditure during quasi-static postures while maximizing structural stability of the spine during transient loading events.  相似文献   

17.
With advancing age, injury, musculoskeletal pathology or a combination of these, a degenerative cascade of biomechanical, biochemical, and nutritional alterations diminish the intervertebral discs' ability to maintain its structure and function. While the biomechanics of isolated disc tissues has been investigated across this degenerative spectrum, none have attempted to retain the in situ disc-endplate morphology during compressive tissue characterization. The objective of this study was to spatially quantify the viscoelastic parameters of the intervertebral disc throughout degeneration, including the as yet unreported residual stress/strain. This required the development of a hybrid confined/in situ indentation methodology, which preserves the disc structural morphology. At four locations of the disc (anterior-AF, right and left lateral AF, and NP) stress-relaxation tests were performed using the hybrid confined/in situ indentation method, which utilizes the vertebral endplate as the porous indenter tip. This method allows the endplate to remain interwoven with the disc tissue, retaining its native orientation. Healthy disc tissue exhibited significantly higher residual stress values compared to both moderate and severe degeneration in all locations (p<0.0156). Furthermore, the equilibrium stress at 15% strain (stress relaxation) was significantly diminished with advancing disc degeneration (p<0.0241). The equilibrium viscoelastic parameters show healthy discs encounter higher forces at the same strain level, and are able to maintain this force, where degenerated discs are unable to maintain this force throughout time. This morphology-conserved method provides insight into the spatial compressive mechanical properties of the intervertebral disc across the degeneration spectrum and will aid in modeling these tissue changes.  相似文献   

18.
This study deals with the viscoelastic constitutive modeling and the respective computational analysis of the human passive myocardium. We start by recapitulating the locally orthotropic inner structure of the human myocardial tissue and model the mechanical response through invariants and structure tensors associated with three orthonormal basis vectors. In accordance with recent experimental findings the ventricular myocardial tissue is assumed to be incompressible, thick-walled, orthotropic and viscoelastic. In particular, one spring element coupled with Maxwell elements in parallel endows the model with viscoelastic features such that four dashpots describe the viscous response due to matrix, fiber, sheet and fiber-sheet fragments. In order to alleviate the numerical obstacles, the strictly incompressible model is altered by decomposing the free-energy function into volumetric-isochoric elastic and isochoric-viscoelastic parts along with the multiplicative split of the deformation gradient which enables the three-field mixed finite element method. The crucial aspect of the viscoelastic formulation is linked to the rate equations of the viscous overstresses resulting from a 3-D analogy of a generalized 1-D Maxwell model. We provide algorithmic updates for second Piola–Kirchhoff stress and elasticity tensors. In the sequel, we address some numerical aspects of the constitutive model by applying it to elastic, cyclic and relaxation test data obtained from biaxial extension and triaxial shear tests whereby we assess the fitting capacity of the model. With the tissue parameters identified, we conduct (elastic and viscoelastic) finite element simulations for an ellipsoidal geometry retrieved from a human specimen.  相似文献   

19.
This paper presents a constitutive model for predicting the nonlinear viscoelastic behavior of soft biological tissues and in particular of ligaments. The constitutive law is a generalization of the well-known quasi-linear viscoelastic theory (QLV) in which the elastic response of the tissue and the time-dependent properties are independently modeled and combined into a convolution time integral. The elastic behavior, based on the definition of anisotropic strain energy function, is extended to the time-dependent regime by means of a suitably developed time discretization scheme. The time-dependent constitutive law is based on the postulate that a constituent-based relaxation behavior may be defined through two different stress relaxation functions: one for the isotropic matrix and one for the reinforcing (collagen) fibers. The constitutive parameters of the viscoelastic model have been estimated by curve fitting the stress relaxation experiments conducted on medial collateral ligaments (MCLs) taken from the literature, whereas the predictive capability of the model was assessed by simulating experimental tests different from those used for the parameter estimation. In particular, creep tests at different maximum stresses have been successfully simulated. The proposed nonlinear viscoelastic model is able to predict the time-dependent response of ligaments described in experimental works (Bonifasi-Lista et al., 2005, J. Orthopaed. Res., 23, pp. 67-76; Hingorani et al., 2004, Ann. Biomed. Eng., 32, pp. 306-312; Provenzano et al., 2001, Ann. Biomed. Eng., 29, pp. 908-214; Weiss et al., 2002, J. Biomech., 35, pp. 943-950). In particular, the nonlinear viscoelastic response which implies different relaxation rates for different applied strains, as well as different creep rates for different applied stresses and direction-dependent relaxation behavior, can be described.  相似文献   

20.
The micropipette aspiration test has been used extensively in recent years as a means of quantifying cellular mechanics and molecular interactions at the microscopic scale. However, previous studies have generally modeled the cell as an infinite half-space in order to develop an analytical solution for a viscoelastic solid cell. In this study, an axisymmetric boundary integral formulation of the governing equations of incompressible linear viscoelasticity is presented and used to simulate the micropipette aspiration contact problem. The cell is idealized as a homogeneous and isotropic continuum with constitutive equation given by three-parameter (E, tau 1, tau 2) standard linear viscoelasticity. The formulation is used to develop a computational model via a "correspondence principle" in which the solution is written as the sum of a homogeneous (elastic) part and a nonhomogeneous part, which depends only on past values of the solution. Via a time-marching scheme, the solution of the viscoelastic problem is obtained by employing an elastic boundary element method with modified boundary conditions. The accuracy and convergence of the time-marching scheme are verified using an analytical solution. An incremental reformulation of the scheme is presented to facilitate the simulation of micropipette aspiration, a nonlinear contact problem. In contrast to the halfspace model (Sato et al., 1990), this computational model accounts for nonlinearities in the cell response that result from a consideration of geometric factors including the finite cell dimension (radius R), curvature of the cell boundary, evolution of the cell-micropipette contact region, and curvature of the edges of the micropipette (inner radius a, edge curvature radius epsilon). Using 60 quadratic boundary elements, a micropipette aspiration creep test with ramp time t* = 0.1 s and ramp pressure p*/E = 0.8 is simulated for the cases a/R = 0.3, 0.4, 0.5 using mean parameter values for primary chondrocytes. Comparisons to the half-space model indicate that the computational model predicts an aspiration length that is less stiff during the initial ramp response (t = 0-1 s) but more stiff at equilibrium (t = 200 s). Overall, the ramp and equilibrium predictions of aspiration length by the computational model are fairly insensitive to aspect ratio a/R but can differ from the half-space model by up to 20 percent. This computational approach may be readily extended to account for more complex geometries or inhomogeneities in cellular properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号