首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of cytidine 5′-diphosphate (CDP) choline: 1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) in developing soybean (Glycine max L. var Williams 82) seeds was 3 to 5 times higher in cotyledons grown at 20°C than in those grown at 35°C. Some characteristics of the enzyme from cotyledons cultured at 20 and 35°C were compared. In preparations from both growth temperatures, the enzyme showed a pH optimum of 7, Km of 7.0 micromolar for CDP-choline, and an optimum assay temperature of 45°C. Both enzyme preparations were stimulated by increasing concentrations of Mg2+ or Mn2+, up to 10 millimolar and 50 micromolar, respectively, though Mn2+ produced lower activities than Mg2+. Enzymes from both 20 and 35°C show the same specificity for exogenous diacylglycerol. No metabolic effectors were detected by addition of heat treated extracts to the assay mixture. The above findings suggest that the higher enzyme activity at 20°C can be attributed to a higher level of the enzyme rather than to the involvement of isozymes or metabolic effectors. Enzyme activity decreased rapidly during culture at 35°C, indicating a rapid turnover of the enzyme. The level of temperature modulation was found to be a function of seed developmental stage.  相似文献   

2.
Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.  相似文献   

3.
Candida ingens, a pellicle-forming yeast utilizing volatile fatty acids, grew over a pH range of 4.1 to 6.0 on nonsterile supernatants from anaerobically fermented pig wastes; growth was inconsistent between pH 4.1 and 4.6. When ambient temperature above the pellicle was 21°C and the temperature of the medium was 29 to 32°C, a pH range of 4.8 to 5.0 gave yields of 1.90 to 3.31 g of dry matter per liter, and 0.059 to 0.065 mol of volatile fatty acids was utilized per liter. There was no advantage in utilization of volatile fatty acids and yield of dry matter in keeping the pH constant during a 24-h growth period. C. ingens grew at pH 4.8 and 5.0 when both ambient and medium temperatures were 30°C. When ambient temperature was 10°C, maximum yield and utilization of volatile fatty acids occurred at a medium temperature of 28 to 30°C.  相似文献   

4.
A method is described for isolating a crystalline protein of high tryptic activity from beef pancreas. The protein has constant proteolytic activity and optical activity under various conditions and no indication of further fractionation could be obtained. The loss in activity corresponds to the decrease in native protein when the protein is denatured by heat, digested by pepsin, or hydrolyzed in dilute alkali. The enzyme digests casein, gelatin, edestin, and denatured hemoglobin, but not native hemoglobin. It accelerates the coagulation of blood but has little effect on the clotting of milk. It digests peptone prepared by the action of pepsin on casein, edestin or gelatin. The extent of the digestion of gelatin caused by this enzyme is the same as that caused by crystalline pepsin and is approximately equivalent to tripling the number of carboxyl groups present in the solution. The activity of the preparation is not increased by enterokinase. The molecular weight by osmotic pressure measure is about 34,000. The diffusion coefficient in ½ saturated magnesium sulfate at 6°C. is 0.020 ±0.001 cm.2 per day, corresponding to a molecular radius of 2.6 x 10–7 cm. The isoelectric point is probably between pH 7.0 and pH 8.0. The optimum pH for the digestion of casein is from 8.0–9.0. The optimum stability is at pH 1.8.  相似文献   

5.
Sisler EC 《Plant physiology》1980,66(3):404-406
An ethylene binding component(s) has been partially purified from mung bean sprouts. Tissue was homogenized in 0.3 molar sucrose and 0.2 molar potassium phosphate buffer (pH 7.0). The homogenate was centrifuged, and resuspended fractions were assayed by incorporating them onto cellulose fibers (0.7 grams per milliliter). These were exposed to [14C]ethylene (3.7 × 10−2 microliters per liter of 120 millicurie per millimole) in the presence or absence of 1000 microliters per liter unlabeled ethylene. The cellulose was transferred to separate containers and the [14C]ethylene was absorbed in mercury perchlorate and counted. Distribution of ethylene binding to various fractions was: 0 to 3,000g, 3%; 3,000 to 12,000g; 4%; 12,000 to 100,000g, 69%; cellular debris, 24%; 100,000g supernatant, 0%. Adjustment of the pH to 4.0 precipitates the ethylene-binding component. Neutralization, addition of Triton X-100, and readjustment of the pH to 4.0 “solubilized” most of the binding component. Further purification was obtained by chromatography on CM-Sephadex in 10 millimolar potassium acetate buffer, (pH 5.0) containing 1% Triton X-100. Elution was with 200 millimolar potassium phosphate (pH 6.0) containing 1% Triton X-100. Upon treatment of the Triton “solubilized” component with cold acetone, over 90% of the binding capacity was lost. Extraction of the acetone-precipitated residue with 2% Triton X-100 restored some of the binding capacity which was found in the soluble fraction. The pH optimum for binding is 6.0. Passing the Triton X-100 extract of the acetone powder through Sepharose 6B provides considerable purification. The binding component moved ahead of most of the protein.  相似文献   

6.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 μm in diameter. The new isolate grew at temperatures between 60 and 95°C (optimum, 85°C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120°C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100°C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110°C. The enzyme formed mainly α-cyclodextrin with small amounts of β- and γ-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

7.
Acetylene reduction (AR) rates by cyanobacteria epiphytic on a moss at Marion Island (46°54′ S, 37°45′ E) increased from −5°C to a maximum at 25 to 27°C. Q10 values between 0 and 25°C were between 2.3 and 2.9, depending on photosynthetic photon flux density. AR rates declined sharply at temperatures above the optimum and were lower at 35°C than at 0°C. Photosynthetic photon flux density at low levels markedly influenced AR, and half of the maximum rate occurred at 84 μmol m−2 s−1, saturation occurring at ca. 1,000 μmol m−2 s−1. Higher photosynthetic photon flux density levels decreased AR rates. AR increased up to the highest sample moisture content investigated (3,405%), and the pH optimum was between 5.9 and 6.2. The addition of P, Co, and Mo, individually or together, depressed AR.  相似文献   

8.
The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na+ as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na+ transport. This is the first proof of Na+ transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na+ in the bioenergetics of archaea.  相似文献   

9.
Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration.  相似文献   

10.
A strain of the starch-converting yeast Lipomyces kononenkoae produced, when grown on starch, a debranching enzyme that proved to be an isoamylase (glycogen 6-glucanohydrolase; E.C. 3.2.1.68). So far, only bacteria have been found to produce extracellular isoamylases. The yeast isoamylase enhanced β-amylolysis of amylopectin and glycogen and completely hydrolyzed these substrates into maltose when combined with a β-amylase but had no action on dextran or pullulan. By isopropanol precipitation and carboxymethyl cellulose chromatography, L. kononenkoae isoamylase was partially purified from the supernatant of cultures grown on a mineral medium with soluble starch. Optimum temperature and pH for activity of the isoamylase were 30°C and 5.6. The molecular weight was around 65,000, and the pI was at pH 4.7 to 4.8. The Km (30°C, pH 5.5) for soluble starch was 9 g liter−1.  相似文献   

11.
A novel gene (designated as cen219) encoding endoglucanase was isolated from a Bursaphelenchus xylophilus metagenomic library by functional screening. Sequence analysis revealed that cen219 encoded a protein of 367 amino acids. SDS-PAGE analysis of purified endoglucanase suggested that Cen219 was a monomeric enzyme with a molecular mass of 40 kDa. The optimum temperature and pH for endoglucanase activity of Cen219 was separately 50°C and 6.0. It was stable from 30 to 50°C, and from pH 4.0 to 7.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by detergent SDS and metals Fe3+, Cu2+ or Hg2+. The enzyme hydrolyzed a wide range of β-1, 3-, and β-1, 4-linked polysaccharides, with varying activities. Activities towards microcrystalline cellulose and filter paper were relatively high, while the highest activity was towards oat gum. The Km and Vmax of Cen219 towards CMC was 17.37 mg/ml and 333.33 U/mg, respectively. The findings have an insight into understanding the molecular basis of host–parasite interactions in B. xylophilus species. The properties also make Cen219 an interesting enzyme for biotechnological application.  相似文献   

12.
Developing soybean (Glycine max) seeds respond to a change in growth temperature by changing the level of stearoyl acyl carrier protein desaturase activity in the tissue. After 20 hours in liquid culture, seeds grown at 20°C show an increase in activity while seeds grown at 35°C show a decrease in activity, relative to their preculture levels. Analysis of the enzyme from both growth conditions shows the change not to be due to induction of kinetically distinct iosenzymes; desaturase activities from both 20°C and 35°C have identical behavior with regard to pH, temperature optimum, substrate concentration and cofactor requirements. Experiments with boiled extracts indicate that the modulation is not caused by induction of metabolic effectors. From these data, it appears that stearoyl-acyl carrier protein desaturase responds to changes in growth temperature by altering the level of active enzyme present in the tissue. The magnitude of this response is a function of the developmental stage of the seed and not a function of the growth conditions of the parent plant. Changing the age of the seeds from early late R5 changed the ratio of 20:35°C activity from 3.8:1 to 1.2:1. Changing the temperature at which the parent plants were grown over a range from 20/12°C to 34/28°C (day/night) produced only minor, and inconsistent, changes in the ratio of 20:35°C activities.  相似文献   

13.
A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 μm in diameter and 2 to 8 μm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor.  相似文献   

14.
In environments with temperatures above 60°C, thermophilic prokaryotes are the only metabolically active life-forms. By using the 35SO42- tracer technique, we studied the activity of sulfate-reducing microorganisms (SRM) in hot sediment from a hydrothermal vent site in the northern part of freshwater Lake Tanganyika (East Africa). Incubation of slurry samples at 8 to 90°C demonstrated meso- and thermophilic sulfate reduction with optimum temperatures of 34 to 45°C and 56 to 65°C, respectively, and with an upper temperature limit of 80°C. Sulfate reduction was stimulated at all temperatures by the addition of short-chain fatty acids and benzoate or complex substrates (yeast extract and peptone). A time course experiment showed that linear thermophilic sulfate consumption occurred after a lag phase (12 h) and indicated the presence of a large population of SRM in the hydrothermal sediment. Thermophilic sulfate reduction had a pH optimum of about 7 and was completely inhibited at pH 8.8 to 9.2. SRM could be enriched from hydrothermal chimney and sediment samples at 60 and 75°C. In lactate-grown enrichments, sulfide production occurred at up to 70 and 75°C, with optima at 63 and 71°C, respectively. Several sporulating thermophilic enrichments were morphologically similar to Desulfotomaculum spp. Dissimilatory sulfate reduction in the studied hydrothermal area of Lake Tanganyika apparently has an upper temperature limit of 80°C.  相似文献   

15.
High thermostability is required for alkaline α-amylases to maintain high catalytic activity under the harsh conditions used in textile production. In this study, we attempted to improve the thermostability of an alkaline α-amylase from Alkalimonas amylolytica through in silico rational design and systems engineering of disulfide bridges in the catalytic domain. Specifically, 7 residue pairs (P35-G426, Q107-G167, G116-Q120, A147-W160, G233-V265, A332-G370, and R436-M480) were chosen as engineering targets for disulfide bridge formation, and the respective residues were replaced with cysteines. Three single disulfide bridge mutants—P35C-G426C, G116C-Q120C, and R436C-M480C—of the 7 showed significantly enhanced thermostability. Combinational mutations were subsequently assessed, and the triple mutant P35C-G426C/G116C-Q120C/R436C-M480C showed a 6-fold increase in half-life at 60°C and a 5.2°C increase in melting temperature compared with the wild-type enzyme. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50°C to 55°C, the optimum pH shifted from 9.5 to 10.0, the stable pH range extended from 7.0 to 11.0 to 6.0 to 12.0, and the catalytic efficiency (kcat/Km) increased from 1.8 × 104 to 2.4 × 104 liters/g · min. The possible mechanism responsible for these improvements was explored through comparative analysis of the model structures of wild-type and mutant enzymes. The disulfide bridge engineering strategy used in this work may be applied to improve the thermostability of other industrial enzymes.  相似文献   

16.
A new strain of Prototheca zopfii Krüger was grown on acetate or on pure n-alkanes. A maximum acetate-supported exponential growth of 12 divisions day−1 occurred at pH 5 and 30°C. At 25°C, growth on n-alkanes was almost as fast, but no growth occurred at 30°C. After 4 days at 25°C, 34 to 45% of the n-alkanes had been removed, whereas at 21°C and slower growth, utilization was twofold greater after 15 days. Rates of growth and utilization increased markedly after a point of sudden emulsification.  相似文献   

17.
Microbial consortia capable of aerobically degrading more than 99% of exogenous trichloroethylene (TCE) (50 mg/liter) were collected from TCE-contaminated subsurface sediments and grown in enrichment cultures. TCE at concentrations greater than 300 mg/liter was not degraded, nor was TCE used by the consortia as a sole energy source. Energy sources which permitted growth included tryptone-yeast extract, methanol, methane, and propane. The optimum temperature range for growth and subsequent TCE consumption was 22 to 37°C, and the pH optimum was 7.0 to 8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride, and, possibly, chloroform.  相似文献   

18.
A moderately halophilic methanogenic bacterium was enriched with trimethylamine and isolated from the sediment of a solar salt pond (total dissolved solids of pond water, 250 g/liter; pH 7.5). The isolate (strain SF1, DSM 3243) was an irregular coccus which stained gram negative, with a diameter of 1 μm and a thin monolayered cell wall. The organism grew singly, in pairs, and in irregular clumps. Colonies were tannish yellow, circular, with entire edges, and about 1 mm in diameter within 1 week. Only methylamines or methanol was used for growth and methanogenesis. Most rapid growth (doubling time, 10.2 h) occurred at a temperature of 37°C and a pH of 7.4. The optimum NaCl concentration was 2.1 M. Yeast extract or rumen fluid was required. The isolate was lysed by sodium dodecyl sulfate (0.1 g/liter) and was sensitive to chloramphenicol. The G+C content of the DNA was 41 (±1) mol%.  相似文献   

19.
The biological utilization of CO2 and H2 for the formation of short-chain fatty acids was studied by using a mixed culture of bacteria. Optimization of a medium was carried out in continuous culture to identify limiting factors which controlled growth and production of organic acids. The optimal pH for growth and acid production was 7.0 at 37°C; the maximal cell concentration obtained was 5.9 g of cells per liter (dry weight), and the maximal amount of volatile acids formed was 4.7 g/liter, with acetic acid as the predominant acid. With the optimized medium, it was found that the rate of transfer of hydrogen or carbon dioxide, or both, from gas to liquid was the limiting factor which controlled growth and production of acids.  相似文献   

20.
When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28°C up to 40°C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as heat shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. A brief 10-minute exposure to 45°C followed by incubation at 28°C also results in the synthesis of HSPs. Prolonged incubation (e.g. 1-2 hours) at 45°C results in greatly impaired protein synthesis and seedling death. However, a pretreatment at 40°C or a brief (10-minute) pulse treatment at 45°C followed by a 28°C incubation provide protection (thermal tolerance) to a subsequent exposure at 45°C. Maximum thermoprotection is achieved by a 2-hour 40°C pretreatment or after 2 hours at 28°C with a prior 10-minute 45°C exposure. Arsenite treatment (50 micromolar for 3 hours) also induces the synthesis of HSP-like proteins, and also provides thermoprotection to a 45°C HS; thus, there is a strong positive correlation between the accumulation of HSPs and the acquisition of thermal tolerance under a range of conditions.

During 40°C HS, some HSPs become localized and stably associated with purified organelle fractions (e.g. nuclei, mitochondria, and ribosomes) while others do not. A chase at 28°C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40°C chase period. If the seedlings are subjected to a second HS after a 28°C chase, the HSPs rapidly (complete within 15 minute) relocalize in the organelle fractions. The relative amount of the HSPs which relocalize during a second HS increases with higher temperatures from 40°C to 45°C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28°C but become organelle-associated during a subsequent HS at 40°C.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号