首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N Vasantha  L D Thompson 《Gene》1986,49(1):23-28
Subtilisin is synthesized as a preproenzyme in Bacillus subtilis. We fused that region of the subtilisin gene, (apr[BamP]), which encodes the signal sequence and pro region, to the mature gene sequence (spa) for a heterologous protein (staphylococcal protein A). B. subtilis cells harboring this gene fusion synthesized a fusion protein consisting of the signal and pro sequence of subtilisin fused to the protein A; the signal sequence was processed and a fusion protein (pro + protein A) was secreted into the growth medium.  相似文献   

2.
The gene coding for the inulin hydrolyzing enzyme levanase which was previously cloned from Bacillus subtilis was fused to the tac-promoter. Overexpression in Escherichia coli resulted in high amounts of intracellularly produced levanase (up to 20 U mg-1). After removal of the bacterial 5' sequences, the levanase gene was also cloned into a yeast expression vector based on the PGK-promoter. Clones containing the intact levanase gene including the bacterial signal sequence gave rise to synthesis of active levanase by Saccharomyces cerevisiae transformants. A considerable amount of levanase protein was found in the culture medium (around 0.5 U ml-1) indicating efficient secretion of B. subtilis levanase from yeast.  相似文献   

3.
Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have inserted a C-terminally truncated gene of the major outer membrane protein OmpA of Escherichia coli downstream from the promoter and signal sequence of the secretory alpha-amylase of Bacillus amyloliquefaciens in a secretion vector of Bacillus subtilis. B. subtilis transformed with the hybrid plasmid synthesized a protein that was immunologically identified as OmpA. All the protein was present in the particulate fraction. The size of the protein compared to the peptide synthesized in vitro from the same template indicated that the alpha-amylase derived signal peptide was not removed; this was verified by N-terminal amino acid sequence determination. The lack of cleavage suggests that there was little or no translocation of OmpA protein across the cytoplasmic membrane. This is an unexpected difference compared with periplasmic proteins, which were both secreted and processed when fused to the same signal peptide. A requirement of a specific component for the export of outer membrane proteins is suggested.  相似文献   

4.
A germination-specific amidase of bacilli is a major spore-lytic enzyme that is synthesized with a putative signal sequence and hydrolyses spore cortex in situ. The sleB gene encoding this amidase in Bacillus subtilis and Bacillus cereus was expressed in the forespore compartment of sporulating cells under the control of sigmaG, as shown by Northern blot and primer extension analyses. The forespore-specific expression of B. subtilis sleB was further indicated by the forespore-specific accumulation of a SleB-green fluorescent protein fusion protein from which a putative secretion signal of SleB was deleted. Immunoelectron microscopy with anti-SleB antiserum and a colloidal gold-immunoglobulin G complex showed that the enzymes from both Bacillus species are located just inside the spore coat layer in the dormant spore, and in the dormant spore, the amidases appear exist in a mature form lacking a signal sequence. These results indicate that SleB is translocated across the forespore's inner membrane by a secretion signal peptide and is deposited in cortex layer synthesized between the forespore inner and outer membranes. The peripheral location of the spore-lytic enzymes in the dormant spore suggests that spore germination is initiated at the exterior of the cortex.  相似文献   

5.
6.
Abstract The molecularly cloned gene encoding the vesicular stomatitis virus (VSV) membrane glycoprotein G was modified and joined to a Bacillus subtilis secretion vector constructed from the plasmid pUB110 and containing the promoter and signal sequence regions of the α-amylase (a secretory protein) gene from Bacillus amyloliquefaciens . The regions encoding the NH2-terminal signal peptide and the COOH-terminal hydrophobic transmembrane domains of the VSV gene were deleted to facilitate the secretion of the G protein in soluble form. The truncated G protein was found to be expressed in B. subtilis . The expression level was low, probably due to rapid proteolytic degradation of the protein and, contrary to what was expected, almost all of the protein remained cell-associated.  相似文献   

7.
M Dion  G Rapoport  J Doly 《Biochimie》1989,71(6):747-755
The mouse interferon alpha 7 gene, the signal sequence of which has been removed by oligonucleotide-directed mutagenesis, was introduced into a Bacillus subtilis secretion vector containing the promoter and the signal sequence of the B. subtilis levansucrase gene. Different B. subtilis strains were transformed with the fused levansucrase-interferon gene; their cell extracts and culture supernatants tested for antiviral activity and the IFN alpha 7 protein showed the presence of IFN alpha 7 only in the cell extracts. To promote IFN alpha 7 secretion, constructs were realized in order to restore the alpha helix conformation of the signal sequence of levansucrase and interferon protein junction. Our results suggest that factors other than the structure of the peptide around the cleavage site are involved in the secretion of IFN alpha 7 by B. subtilis.  相似文献   

8.
9.
10.
Biotin synthetase (BS) catalyses the biotransformation of dethiobiotin (DTB) to biotin. Here we report the cloning, characterization and expression of the gene encoding BS of Bacillus sphaericus. A recombinant plasmid pSB01, containing an 8.2-kb DNA fragment from B. sphaericus, was isolated by phenotypic complementation of an Escherichia coli bioB strain. Nucleotide sequence analysis of this fragment and N-terminal sequence determination of the recombinant protein product revealed that the bioB gene of B. sphaericus consists of a 996-bp open reading frame which is closely associated with at least one other gene. E. coli cells transformed with a bioB expression vector performed efficient bioconversion of DTB to biotin under defined culture conditions. Biotin production from transformed Bacillus subtilis and B. sphaericus recombinant strains was also demonstrated. Comparison of the amino acid sequences of BS from E. coli and B. sphaericus revealed extensive similarity.  相似文献   

11.
The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.  相似文献   

12.
Gene fusions of DNA sequences encoding protein A from Staphylococcus aureus (spa) with expression elements from an alpha-amylase gene from Bacillus amyloliquefaciens (amyEBamP) directed the synthesis and efficient secretion of protein A in Bacillus subtilis. The fusions were established on multicopy pUB110-based plasmid vectors, in contrast to the intact spa gene, which could not be stably established on plasmids in B. subtilis. Some of the resulting B. subtilis strains secreted protein A at levels in excess of 1 g/liter, demonstrating that a foreign protein encoded by an engineered gene can be secreted by B. subtilis at levels comparable to endogenous exoproteins.  相似文献   

13.
Secretion vectors based on the genes from Bacillus amyloliquefaciens P for alkaline protease (aprBamP) and neutral protease (nprBamP) were constructed. With both aprBamP and nprBamP, a unique restriction site was introduced 3' of the predicted signal coding region by using the technique of oligonucleotide-directed mutagenesis. The new sites enabled us to fuse a heterologous gene to the expression and secretion elements. We used the protein A gene (spa) from Staphylococcus aureus as a heterologous gene. Bacillus subtilis cells carrying the resulting apr-spa or npr-spa gene fusions synthesized the fusion protein. B. subtilis cells were also capable of removing the signal peptide from the fusion protein, as indicated by the appearance of processed protein A into the growth medium. In addition, these gene fusions allowed us to identify the signal processing site of both the APR-SPA and NPR-SPA proteins.  相似文献   

14.
15.
In order to achieve high level expression and to study the release of a protein capable of self-assembly, the gene encoding the crystalline cell surface (S-layer) protein SbsA of Bacillus stearothermophilus PV72/p6, including its signal sequence, was cloned and expressed in Bacillus subtilis. To obtain high level expression, a tightly regulated, xylose-inducible, stably replicating multicopy-plasmid vector was constructed. After induction of expression, the S-layer protein made up about 15% of the total cellular protein content, which was comparable to the SbsA content of B. stearothermophilus PV72/p6 cells. During all growth stages, SbsA was poorly secreted to the ambient cellular environment by B. subtilis. Extraction of whole cells with guanidine hydrochloride showed that in late stationary growth phase cells 65% of the synthesised SbsA was retained in the peptidoglycan-containing layer, indicating that the rigid cell wall layer was a barrier for efficient SbsA secretion. Electron microscopic investigation revealed that SbsA release from the peptidoglycan-containing layer started in the late stationary growth phase at distinct sites at the cell surface leading to the formation of extracellular self-assembly products which did not adhere to the cell wall surface. In addition, intracellular sheet-like SbsA self-assembly products which followed the curvature of the cell became visible in partly lysed cells. Intracellularly formed self-assembly products remained intact even after complete lysis of the rigid cell envelope layer.  相似文献   

16.
The 5' regulatory region and the portion of the structural gene coding for the amino-terminal sequence of alkaline phosphatase I (APase I) were isolated from Bacillus licheniformis MC14 using a synthetic oligodeoxynucleotide deduced from the amino acid sequence of the enzyme. The DNA sequence analysis of this region revealed an open reading frame of 129 amino acids containing the amino-terminal sequence of the mature APase protein. The protein sequence was preceded by a putative signal sequence of 32 amino acid residues. The predicted amino acid sequence of the partial APase clone as well as the experimentally determined amino acid sequence of the enzyme indicated that B. licheniformis APase retains the important features conserved among other APases of Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae, and various human tissues. Heterologous expression studies of the promoter using a fusion with the lacZ gene indicated that it functions as a very strong inducible promoter in B. subtilis that is tightly regulated by phosphate concentration.  相似文献   

17.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

18.
Staphylococcal protein A was synthesized at high levels and was secreted efficiently into the culture medium by strains of Bacillus subtilis in which the cloned gene (spa) from Staphylococcus aureus 8325-4 was inserted into the chromosome. The spa gene could not be established in B. subtilis on multicopy plasmids.  相似文献   

19.
Guanyl-specific ribonucleases from Bacillus intermedius and Bacillus pumilus are actively secreted under phosphate starvation by recombinant strains of Bacillus subtilis with native regulatory systems and by strains defective in some proteins of the Spo0A phosphorylation pathway. The level of expression of ribonuclease genes has been shown to increase approximately sixfold in recombinant strains with mutation in the spo0A gene and threefold in the spo0A/abrB mutants, as compared with native strains. These results demonstrate that the Spo0A protein regulates the production of ribonucleases and thus acts as a repressor, while the AbrB protein is an activator of expression of the genes encoding ribonucleases from Bacillus intermedius and Bacillus pumilus in Bacillus subtilis cells.  相似文献   

20.
To study the effect of inserted peptides on the secretion and processing of exported proteins in Bacillus subtilis and Escherichia coli, pBR322-derived DNA fragments coding for small peptides were inserted between the DNA coding for the 31 amino acid B. subtilis alpha-amylase signal peptide and that coding for the mature part of the extracellular thermostable alpha-amylase of B. stearothermophilus. Most of the inserted peptides (21 to 65 amino acids) decreased the production of the enzyme in B. subtilis and E. coli, the effect of each peptide being similar in the two strains. In contrast, with one peptide (a 21 amino acid sequence encoded by the extra DNA in pTUBE638), the production of alpha-amylase was enhanced more than 1.7-fold in B. subtilis in comparison with that of the parent strain. The molecular masses of the thermostable alpha-amylases in the periplasm of the E. coli transformants varied for each peptide insert, whereas those in the culture supernatants of the B. subtilis transformants had molecular masses similar to that of the mature enzyme. Based on the NH2-terminal amino acid sequence of the hybrid protein from pTUBE638, it was shown that in E. coli, the NH2-terminally extended thermostable alpha-amylase was translocated and remained in the periplasm after the 31 amino acid signal sequence was removed. In the case of B. subtilis, after the removal of a 34-amino acid signal sequence, the hybrid protein was secreted and processed to the mature form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号