首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromate (Cr(VI)) reduction tests were performed with nitrate- and fumarate-grown stationary phase cultures of Shewanella oneidensis MR-1 (henceforth referred to as MR-1) and disappearance of Cr(VI) was monitored over time. A rapid initial decrease in Cr(VI) concentration was observed, which was followed by a slower, steady decrease. These observations appear to be consistent with our previous results indicating that Cr(VI) reduction in MR-1 involves at least two mechanisms (Viamajala et al., 2002b). Modeling of metal reduction kinetics is often based on single-enzyme Michaelis-Menten equations. However, these models are often developed using initial rates and do not always match actual reduction profiles. Based on the hypothesis that multiple Cr(VI) reduction mechanisms exist in MR-1, a model was developed to describe the kinetics of Cr(VI) reduction by two parallel mechanisms: (1) a rapid Cr(VI) reduction mechanism that was deactivated (or depleted) quickly, and (2) a slower mechanism that had a constant activity and was sustainable for a longer duration. Kinetic parameters were estimated by fitting experimental data, and model fits were found to correspond very closely to quantitative observations of Cr(VI) reduction by MR-1.  相似文献   

2.
We compared the performance of aerobic Cr(VI)-reducing bacteria isolated from Cr(VI)-contaminated soil in pure and mixed cultures of five isolated strains. The mixed culture had increased reduction rates compared to individual cultures. Cr(VI) reduction was observed in sterile soil inoculated with Pseudomonas fluorescens and in non-sterile soil with and without inoculation with P. fluorescens at initial pore water concentrations up to 1,600 mg Cr(VI)/L, whereas in culture the maximum inhibitory concentration was 500 mg Cr(VI)/L. Linear rates of Cr(VI) reduction in non-sterile soil amended with peptone were ~5 to 8 times higher than those observed in the mixed culture. Inoculation of non-sterile soil with P. fluorescens did not further enhance Cr(VI) reduction rates. Our results indicate that evaluation of Cr(VI) reduction capacity in Cr(VI)-contaminated soil for in-situ bioremediation purposes should not be done solely in pure culture. Although the latter may be used initially to assess the effects of process parameters (e.g., pH, temperature), the rate and extent of Cr(VI) reduction should be determined in soil for bioremediation design purposes.  相似文献   

3.
Hexavalent chromium, Cr(VI), is toxic to living systems. Widespread contamination of water and soil by Cr(VI) present a serious public health problem. Chromium-resistant bacteria can reduce and detoxify Cr(VI). Twelve bacteria resistant to high concentrations of Cr(VI) were isolated from soil enrichment cultures. Environmental parameters and kinetic parameters of Cr(VI) bioreduction by one monoculture isolate, identified by 16S rRNA gene sequence as Bacillus sp. PB2, were studied. The optimal temperature for growth and Cr(VI) reduction was 35 degrees C. The isolate grew luxuriantly and substantially reduced Cr(VI) at initial pH 7.5 to 9. Maximal Cr(VI) bioreduction occurred at initial pH 8.0. Substantial Cr(VI) bioreduction was observed in salt media, but removal efficiency was inversely related to salt concentration (1-9%). Michaelis-Menten hyperbolic equation and the Lineweaver-Burk double reciprocal plot were comparatively employed to determine the k (m) and V (max) of Cr(VI) bioreduction. A k (m) of 82.5 microg mL(-1) and V (max) of 7.78 microg mL(-1) h(-1) were calculated by nonlinear regression analysis of the hyperbola curve. Linear regression analysis of the double reciprocal plot revealed k (m) and V (max) of 80.9 microg mL(-1) and 10.6 microg mL(-1) h(-1), respectively. Time course studies displayed about 90% reduction of Cr(VI) at an initial concentration of 8,000 microg L(-1) in 8 h, with an estimated t (1/2) of 4 h. Data from time course analysis of the rate of Cr(VI) bioreduction fitted zero-order model, and the kinetic constant k was calculated to be 840 microg L(-1) h(-1). The monoculture isolate, Bacillus sp. PB2, strongly reduces Cr(VI) and could be used for bioremediation of Cr(VI)-contaminated aquatic and terrestrial environments.  相似文献   

4.
Based on the kinetics of Cr(VI) reduction by Escherichia coli ATCC 33456 and phenol degradation by Pseudomonas putida DMP-1, a mathematical model is developed to describe simultaneous Cr(VI) reduction and phenol degradation in the coculture of the two species. The developed model incorporates the toxicity effects of Cr(VI) and phenol on phenol degradation and Cr(VI) reduction in the coculture. The model illustrates the inhibitory effects of phenol on Cr(VI) reduction and Cr(VI) toxicity toward phenol degradation. The model also reveals the recoveries of the activities of the repressed bacterial cells with continuous Cr(VI) reduction and phenol degradation in the coculture. The model is capable of predicting simultaneous Cr(VI) reduction and phenol degradation within a broad range of Cr(VI) and phenol concentrations and under an appropriate composition of populations. However, the model simulates lower concentrations of phenol than experimental observations once Cr(VI) is reduced to a low level (<7 mg/L). The model simulation for Cr(VI) also deviates from experimental data when P. putida is outnumbered by E. coli by a ratio of 1:5. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
The adsorption Cr(VI) from aqueous solutions onto hazelnut shell activated carbon was carried out by varying the parameters such as pH, initial Cr(VI) concentration and temperature. The experimental data fitted well to the pseudo first-order kinetic model and then the rate constants were evaluated. The Langmuir isotherm provided the best correlation for Cr(VI) onto the activated carbon. Adsorption capacity was calculated from the Langmuir isotherm as 170 mg/g at an initial pH of 1.0 for the 1000 mg/l Cr(VI) solution. Thermodynamic parameters were evaluated and the adsorption is endothermic showing monolayer adsorption of Cr(VI).  相似文献   

6.
Inhibition of hexavalent chromium [Cr(VI)] reduction due to nitrate and nitrite was observed during tests with Shewanella oneidensis MR-1 (previously named Shewanella putrefaciens MR-1 and henceforth referred to as MR-1). Initial Cr(VI) reduction rates were measured at various nitrite concentrations, and a mixed inhibition kinetic model was used to determine the kinetic parameters-maximum Cr(VI) reduction rate and inhibition constant [V(max,Cr(VI)) and K(i,Cr(VI))]. Values of V(max,Cr(VI)) and K(i,Cr(VI)) obtained with MR-1 cultures grown under denitrifying conditions were observed to be significantly different from the values obtained when the cultures were grown with fumarate as the terminal electron acceptor. It was also observed that a single V(max,Cr(VI)) and K(i,Cr(VI)) did not adequately describe the inhibition kinetics of either nitrate-grown or fumarate-grown cultures. The inhibition patterns indicate that Cr(VI) reduction in MR-1 is likely not limited to a single pathway, but occurs via different mechanisms some of which are dependent on growth conditions. Inhibition of nitrite reduction due to the presence of Cr(VI) was also studied, and the kinetic parameters V(max,NO2) and K(i,NO2) were determined. It was observed that these coefficients also differed significantly between MR-1 grown under denitrifying conditions and fumarate reducing conditions. The inhibition studies suggest the involvement of nitrite reductase in Cr(VI) reduction. Because nitrite reduction is part of the anaerobic respiration process, inhibition due to Cr(VI) might be a result of interaction with the components of the anaerobic respiration pathway such as nitrite reductase. Also, differences in the degree of inhibition of nitrite reduction activity by chromate at different growth conditions suggest that the toxicity mechanism of Cr(VI) might also be dependent on the conditions of growth. Cr(VI) reduction has been shown to occur via different pathways, but to our knowledge, multiple pathways within a single organism leading to Cr(VI) reduction has not been reported previously.  相似文献   

7.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

8.
This study reported the hexavalent chromium removal by untreated Mucor racemosus biomass and the possible mechanism of Cr (VI) removal to the biomass. The optimum pH, biomass dose, initial Cr (VI) concentration and contact time were investigated thoroughly to optimize the removal condition. The metal removal by the biomass was strongly affected by pH and the optimum pH ranged from 0.5 to 1.0. The residual total Cr was determined. It was found that dichromate reduction occurred at a low very low pH value. At biomass dose 6 g/l, almost all the Cr (VI) ions were removed in the optimum condition. Higher removal percentage was observed at lower initial concentrations of Cr (VI) ions, while the removal capacity of the biomass linearly depended on the initial Cr (VI) concentration. More than half of Cr (VI) ions were diminished within 1 h of contact and removal process reached a relative equilibrium in approximately 8 h. Almost all of the Cr (VI) ions were removed in 24 h when initial concentrations were below 100 mg/l. The equilibrium data were fitted in to the Langmuir and the Freundlich isotherm models and the correlated coefficients were gained from the models. A Fourier transform infrared spectra was employed to elucidate clearly the possible biosorption mechanism as well.  相似文献   

9.
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)].  相似文献   

10.
Microbial reduction is a promising strategy for chromium remediation, but the effects of competing electron acceptors are still poorly understood. We investigated chromate (Cr(VI)) reduction in batch cultures of Shewanella oneidensis MR-1 under aerobic and denitrifying conditions and in the absence of an additional electron acceptor. Growth and Cr(VI) removal patterns suggested a cometabolic reduction; in the absence of nitrate or oxygen, MR-1 reduced Cr(VI), but without any increase in viable cell counts and rates gradually decreased when cells were respiked. Only a small fraction (1.6%) of the electrons from lactate were transferred to Cr(VI). The 48-h transformation capacity (Tc) was 0.78 mg (15 micromoles) Cr(VI) reduced. [mg protein](-1) for high levels of Cr(VI) added as a single spike. For low levels of Cr(VI) added sequentially, Tc increased to 3.33 mg (64 micromoles) Cr(VI) reduced. [mg protein](-1), indicating that it is limited by toxicity at higher concentrations. During denitrification and aerobic growth, MR-1 reduced Cr(VI), with much faster rates under denitrifying conditions. Cr(VI) had no effect on nitrate reduction at 6 microM, was strongly inhibitory at 45 microM, and stopped nitrate reduction above 200 microM. Cr(VI) had no effect on aerobic growth at 60 microM, but severely inhibited growth above 150 microM. A factor that likely plays a role in Cr(VI) toxicity is intracellular reduced chromium. Transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of denitrifying cells exposed to Cr(VI) showed reduced chromium precipitates both extracellularly on the cell surface and, for the first time, as electron-dense round globules inside cells.  相似文献   

11.
Batch and continuous cultures of Pseudomonas fluorescens LB300 were shown to reduce hexavalent chromium, Cr(VI), aerobically at neutral pH (pH 7.0) with citrate as carbon and energy source. The product of Cr(VI) reduction was previously shown and confirmed in this work to be trivalent chromium, Cr(III), by quantitative reoxidation to Cr(VI) with KMnO4. In separate batch cultures (100 ml) containing initial Cr(VI) concentrations of 314.0, 200.0 and 112.5 mg Cr(VI) L–1, the organism reduced 61%, 69% and 99.7% of the Cr(VI), respectively. In a comparison of stationary and shaken cultures, the organism reduced 81% of Cr(VI) in 147 h in stationary culture and 80% in 122 h in shaken culture. In continuous culture, the organism lowered the influent Cr(VI) concentration by 28% with an 11.7-h residence time, by 39% with a 20.8-h residence time and by 57% with a 38.5-h residence time. A mass balance of chromium in a continuous culture at steady state showed an insignificant uptake of chromium by cells of P. fluorescens LB300. Correspondence to: P. C. DeLeo  相似文献   

12.
In this research, kinetics of Cr(VI) reduction by iron filings was investigated through a batch study in seven different soils. Chromate reduction experiments were carried out for initial Cr(VI) concentrations ranging from 20 to 100 mgkg?1 and iron filings dosage of 0 to 5% w/w. The experimental data were analyzed using various kinetic models including zero-order, pseudo first-order, power function, Elovich, and diffusion parabolic. Results showed that the Cr(VI) reduction efficiency in the presence of all studied soils increased with increasing iron filings dosage and decreased with increasing the initial Cr(VI) concentration. The reaction rates considerably depended on pH and were higher in acidic soils. The diffusion parabolic model was the best kinetic model as evidenced by the highest determination coefficient (r2) and the lowest standard error of the estimate (SE). The rate-limiting step(s) may be transport of chromate anions across a liquid film at the interface of soil-liquid, transport in liquid-filled macropores of iron filings aggregates, or diffusion in micropores and along the particle's surface.  相似文献   

13.
An aerobic mixed culture collected in the form of activated sludge was enriched for Cr(VI) reduction. An indigenous microorganism was isolated from the enriched aerobic mixed culture and identified as Pseudomonas taiwanensis. Bioremediation studies were carried out for treating Cr(VI)-contaminated wastewater using the indigenous microorganism. The kinetic studies were carried out for initial Cr(VI) concentrations ranging from 20 to 200 mg L?1. The maximum consumption of Cr(VI) obtained was 108.3 mg L?1 for an initial Cr(VI) concentration of 150 mg L?1 at a solution pH of 7.0. The effect of nutrient dosage and pH were studied to get their optimum values. The same isolated bacterial strain was also used to treat Cr(VI)-contaminated industrial wastewater collected from a local plating industry. Various growth kinetic models, such as Monod, Powell, Haldane, Luong, and Edward models, were fitted with the obtained experimental data. The obtained results for different growth kinetic models indicate that the growth kinetics of Pseudomonas taiwanensis for bioremediation of Cr(VI) can be better understood by the Luong model (R2 = .913). The rate kinetic analysis was performed using zero-order and three-half-order kinetic models. The three-half-order kinetic model was found to be suitable for the present bioremediation study.  相似文献   

14.
A one-dimensional diffusion-reaction model was developed to simulate Cr(VI) reduction in a Bacillus sp. pure culture biofilm reactor with glucose as a sole supplied carbon and energy source. Substrate utilization and Cr(VI) reduction in the biofilm was best represented by a system of (second-order) partial differential equations (PDEs). The PDE system was solved by the (fourth-order) Runge-Kutta method adjusted for mass transport resistance using the (second-order) Crank-Nicholson and Backward Euler finite difference methods. A heuristic procedure (genetic search algorithm) was used to find global optimum values of Cr(VI) reduction and substrate utilization rate kinetic parameters. The fixed-film bioreactor system yielded higher values of the maximum specific Cr(VI) reduction rate coefficient and Cr(VI) reduction capacity (kmc = 0.062 1/h, and Rc = 0.13 mg/mg, respectively) than previously determined in batch reactors (kmc = 0.022 1/h and Rc = 0.012 mg/mg). The model predicted effluent Cr(VI) concentration well with 98.9% confidence (sigmay2 = 2.37 mg2/L2, N = 119) and effluent glucose with 96.4 % confidence (sigmay(w)2 = 5402 mg2/L2, N = 121, w = 100) over a wide range of Cr(VI) loadings (10-498 mg Cr(VI)/L/d).  相似文献   

15.
The contamination of soil and wastewaters with Cr(VI) is a major problem. It has been suggested that microbial methods for Cr(VI) reduction are better than chemical methods, as they do not add other ions or toxic chemicals to the environment. In this study an aerobic reduction of Cr(VI) to Cr(III) by employing mixed Pseudomonas cultures isolated from a marshy land has been reported. The role of chromium concentration, temperature, pH and additives on the microbial reduction of Cr(VI) has been investigated. NADH was found to enhance the rate of reduction of Cr(VI). Complete reduction of chromium(VI) has been possible even at chromium(VI) concentrations of 300 ppm. Ions like SO(4)(2-) and poly-phenols inhibited the metabolic activity relating to Cr(VI) reduction. Under optimal conditions 100 mg/L of Cr(VI) was completely reduced within 180 min.  相似文献   

16.
Enrichment mixed cultures tolerating relatively high concentrations of chromium and salt ions were isolated and their bioaccumulation properties improved by adaptation. Mixed cultures were enriched in Nutrient Broth media containing 25-300 mg l(-1) Cr(VI) and 0%, 2%, 4%, 6% (w/v) NaCl. Bioaccumulation of Cr(VI) was studied in a batch system as a function of initial pH (7, 8 and 9), Cr(VI) and NaCl concentrations. Increasing NaCl and Cr(VI) concentrations led to significant decreases in percentage uptake and dried weight of mixed cultures but increased maximum specific chromium uptake. The maximum specific chromium uptake value at pH 8 was 58.9 mg g(-1) for 316.1 mg l(-1) Cr(VI) in the absence of NaCl, while at pH 9 it was 130.1 mg g(-1) in media including 194.5 mg l(-1) Cr(VI) and 2% NaCl concentrations. At 4% NaCl, the maximum Cr(VI) uptake of 127.0 mg g(-1) for 221.1 mg l(-1) Cr(VI) occurred at pH 9, while at 6% NaCl the maximum Cr(VI) uptake of 114.9 mg g(-1) for 278.1 mg l(-1) Cr(VI) was found at pH 7.  相似文献   

17.
【目的】考察p H值、初始Cr(VI)浓度、Fe(III)的加入及氧气含量对隐藏嗜酸菌Acidiphilium cryptum XTS还原Cr(VI)的影响及其六价铬还原相关基因在不同培养条件下的差异表达。【方法】采用正交试验法L9(34)优选Cr(VI)还原最适条件;根据模式菌A.cryptum JF-5同源功能基因序列设计引物,对菌株XTS中的六价铬还原相关基因Acry2099在不同培养条件下的基因差异表达进行分析。【结果】p H为2.9,初始Cr(VI)浓度为80 mg/L,Fe(III)浓度为100 mg/L的条件是该菌株还原Cr(VI)的最优化配合比,在该条件下处理24 h,Cr(VI)的还原率达到67.48%;从菌株XTS中成功克隆了Acry2099基因,其序列与模式菌A.cryptum JF-5的同源功能基因序列一致性达到了99.7%;在不同p H值、初始Cr(VI)浓度及氧气含量下Acry2099基因表达上调情况与Cr(VI)还原速率呈一致趋势,证明Acry2099很可能参与还原Cr(VI)的代谢途径。虽然加入Fe(III)能促进Cr(VI)的还原,但是铁的加入对Acry2099基因表达水平没有显著的影响。【结论】A.cryptum XTS对Cr(VI)的还原与p H值、初始Cr(VI)浓度、Fe(III)的存在等因素有关,较低的p H和较高的初始Cr(VI)浓度对该菌还原Cr(VI)具有促进作用。  相似文献   

18.
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.  相似文献   

19.
Abstract

Industrial activities discharge a large amount of wastes containing hexavalent chromium [Cr(VI)] into the environment, which poses a threat to human health. Microorganisms can be used as efficient tools for Cr(VI) remediation. In this study, the Cr(VI) removal capacity of Aspergillus niger was evaluated. A. niger could tolerate and reduce Cr(VI) by nearly 100% at concentrations ranging from 10 to 50?mg/L. Overall, almost 97% of the Cr(VI) removal was caused by extracellular reduction whereas 3% was caused by accumulation. Extracellular reduction was mediated by non-enzymatic cell secretions, whereas extracellular accumulated Cr formed precipitates on the hyphal surfaces and was partially absorbed on the cell wall. Cr(VI) also entered the cell and was reduced by the strong chromate reductase activity in cell-free extracts and then accumulated within the cell. These data suggest that A. niger, which has the capacity to remove Cr(VI) by reduction and accumulation, can be a useful tool for Cr(VI) remediation.  相似文献   

20.
Simultaneous Cr(VI) reduction and phenol degradation were investigated in a reactor containing Pseudomonas aeruginosa CCTCC AB91095. Phenol was used as carbon source. P.aeruginosa utilized metabolites formed during phenol degradation as energy source for Cr(VI) reduction. Cr(VI) inhibited both Cr(VI) reduction and phenol degradation when Cr(VI) concentration exceeded the optimum value (20 mg/L), whereas phenol enhanced both Cr(VI) reduction and phenol degradation below the optimum initial concentration of 100 mg/L. Cr(III) was the predominant product of Cr(VI) reduction in cultures after incubation for 24 h. Both Cr(VI) reduction and phenol degradation were influenced by the amount of inocula. The concentration of Cr(VI) and phenol declined quickly from 20, 100 to 3.36, 29.51 mg/L in cultures containing of 5% (v/v) inoculum after incubation for 12 h, respectively. The whole study showed that P. aeruginosa is promising for the reduction of toxic Cr(VI) and degradation of organic pollutants simultaneously in the mineral liquid medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号