共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
DNA replication is a complex mechanism that functions due to the coordinated interplay of many factors. In the last few years, numerous studies have suggested that DNA replication factors are closely implicated in several DNA transaction events that maintain the integrity of the genome. Therefore, DNA replication fork factors have to be considered as part of a general process that aims to protect and replicate the genome in order to allow correct functioning of a cell and its eventual daughter cells. This is illustrated by the numerous factors that have a well-defined function at the DNA replication fork, but also play crucial roles in different DNA repair pathways such as base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair. Moreover, several of the replisome proteins have also been shown to be essential in sensing and transducing DNA damages through the checkpoint cascade pathways, including the recently characterised alternative clamps and clamp-loaders. In this review we present DNA replication factors that are involved in different DNA transaction and checkpoint regulation pathways, with emphasis on the link between DNA replication and maintenance of genomic stability. 相似文献
3.
4.
5.
Phosphodiester bonds between polypeptides and chromosomal DNA 总被引:5,自引:0,他引:5
Polypeptides co-purifying with DNA in alkali are covalently bound to DNA. DNA purified by treatment with alkali, sodium dodecyl sulphate and phenol absorbed 125I under conditions designed to radioiodinate exclusively tyrosine and histidine in peptides. A significant amount of the absorbed 125I remained associated with DNA during treatment with phenol as well as during precipitation with ethanol from neutral and alkaline solutions. However, after prolonged digestion with proteinase K, most of the radiolabelled material could be removed from 125I-treated DNA. Further treatment with a second protease (Pronase) released no larger fraction of the 125I label. The residual radiolabelled material could be precipitated together with DNA by ethanol and it remained associated with DNA also in the presence of alkali (95 degrees C), acid (37 degrees C) and hydroxylamine (37 degrees C). In contrast, radiolabelled peptides were released from DNA by treatment with hot piperidine (10% at 95 degrees C) and by agents that hydrolyse peptides and modify DNA, e.g. strong acid (95 degrees C) and formic acid/diphenylamine. The radiolabelled peptides, once released from DNA by these chemical methods, could be further cleaved by Pronase. This shows that the residual DNA/peptide complex isolated after prolonged protease digestion is protease-resistant unless it is cleaved or otherwise modified by harsh chemical treatment. The linking groups between deoxynucleotides and the radiolabelled residual peptides could be isolated by digestion of DNA in the DNA/peptide complex. Radiolabelled peptides could be released from this linking group material by phosphodiesterases, indicating the involvement of phosphodiesters in the linking groups. 相似文献
6.
7.
Antimicrobial misuse results in the development of resistance and superbugs. Over recent decades, resistance has been increasing despite continuing efforts to control it, resulting in increased mortality and cost. Many authorities have proposed local, regional and national guidelines to fight against this phenomenon, and the usefulness of these programmes has been evaluated. Multifaceted intervention seems to be the most efficient method to control antimicrobial resistance. Monitoring of bacterial resistance and antibiotic use is essential, and the methodology has now been homogenized. The implementation of guidelines and infection control measures does not control antimicrobial resistance and needs to be reinforced by associated measures. Educational programmes and rotation policies have not been evaluated sufficiently in the literature. Combination antimicrobial therapy is inefficient in controlling antimicrobial resistance. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
Katrin Weigmann 《EMBO reports》2016,17(9):1257-1260
16.
17.
18.
To isolate DNA sequences unique to chromosome 21 we have used a recombinant-DNA library, constructed from a mouse-human somatic-cell hybrid line containing chromosome 21 as the only human chromosome. Individual recombinant phage containing human DNA inserts were identified by their hybridization to total human DNA sequences and by their failure to hybridize to total mouse DNA sequences. A repeat-free human DNA fragment was then subcloned from each of 14 such recombinant phage. An independent somatic-cell hybrid was used to assign all 14 subcloned fragments to chromosome 21. Thirteen of the fragments have been regionally mapped using a somatic-cell hybrid containing a human 21 translocation chromosome. Two probes map proximal to the 21q21.2 translocation breakpoint, and 11 probes map distal to this breakpoint, placing them in the region 21q21.2-21q22. One of seven probes used to screen for restriction-fragment-length polymorphisms recognized polymorphic DNA fragments when hybridized to genomic DNA from unrelated individuals. These 14 unique probes provide useful tools for studying the structure and function of human chromosome 21 as well as for investigating the molecular biology of Down syndrome. 相似文献
19.
To provide colloidally stable polyplexes formed between pDNA and cationic polymers, cationic polymers have been modified with hydrophilic polymers to form a hydrophilic shell. Block copolymers of cationic and hydrophilic polymers and cationic polymers grafted with hydrophilic polymers are representative designs of such polymers. Here, we report a new design of cationic polymers and oligocationic peptide-grafted polymers. We synthesized 15 kinds of graft copolymers by varying the number of cationic charges of the peptides and their grafting density. We found that graft copolymers with less cationic peptides and less grafting density formed colloidally stable polyplexes. Interestingly, the less cationic graft copolymers bind to excess amounts of pDNA. We also found that the graft copolymers showed selectivity toward reactive enzymes affording the reaction of pDNA with nucleases, while suppressing both the replication of DNA by DNA polymerase and gene expression. The suppression of the replication and expression is considered to result from the high capacity of the graft copolymers for binding with pDNA. The polynucleotides produced by DNA polymerase or RNA polymerase would be captured by the graft copolymers to impede these enzymatic reactions. 相似文献
20.