首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重力对地球上生物的生长、发育、代谢及繁殖等具有重要影响.植物细胞的重力敏感性已被众多研究所证明,在空间微重力环境或地面模拟微重力环境下,植物表现特殊的微重力反应.微重力或模拟微重力会对植物体生长产生一系列的影响.综述微重力及模拟微重力对植物生长的影响,并对近期这一领域的研究进行了概括.  相似文献   

2.
Proteomic Analysis of Mouse Hypothalamus under Simulated Microgravity   总被引:2,自引:0,他引:2  
Exposure to altered microgravity during space travel induces changes in the brain and these are reflected in many of the physical behavior seen in the astronauts. The vulnerability of the brain to microgravity stress has been reviewed and reported. Identifying microgravity-induced changes in the brain proteome may aid in understanding the impact of the microgravity environment on brain function. In our previous study we have reported changes in specific proteins under simulated microgravity in the hippocampus using proteomics approach. In the present study the profiling of the hypothalamus region in the brain was studied as a step towards exploring the effect of microgravity in this region of the brain. Hypothalamus is the critical region in the brain that strictly controls the pituitary gland that in turn is responsible for the secretion of important hormones. Here we report a 2-dimensional gel electrophoretic analysis of the mouse hypothalamus in response to simulated microgravity. Lowered glutathione and differences in abundance expression of seven proteins were detected in the hypothalamus of mice exposed to microgravity. These changes included decreased superoxide dismutase-2 (SOD-2) and increased malate dehydrogenase and peroxiredoxin-6, reflecting reduction of the antioxidant system in the hypothalamus. Taken together the results reported here indicate that oxidative imbalance occurred in the hypothalamus in response to simulated microgravity.  相似文献   

3.
与正常重力下生长的植物幼苗对照相比 ,在竖直平面内经回转器连续做 12 0h圆周回转的草莓和香石竹幼苗的生长状况发生如下变化 :(1)株高和叶片数有所增加 ;(2 )草莓的叶绿素含量降低 47.5 % ,香石竹叶绿素含量增加 4.3% ;(3)回转后两种幼苗的叶绿素的主要吸收峰位不变 ,而每个峰位吸收强度有所增加 ;(4 )两种幼苗的叶片快速荧光动力学参数 ,回转后除CA/F0 外 ,Fv/F0 、Fv/Fm 和T1/ 2 均有提高 ;(5 )对照和处理的叶绿体的两个光系统间的激发能分配有差异 ,但未影响处理的叶绿体的光合功能  相似文献   

4.
Sustaining life beyond Earth either on space stations or on other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction. However, because of the difficulty of doing such experiments in mammals, most studies of reproduction in space have been carried out with other taxa, such as sea urchins, fish, amphibians or birds. Here, we studied the possibility of mammalian fertilization and preimplantation development under microgravity (µG) conditions using a three-dimensional (3D) clinostat, which faithfully simulates 10–3 G using 3D rotation. Fertilization occurred normally in vitro under µG. However, although we obtained 75 healthy offspring from µG-fertilized and -cultured embryos after transfer to recipient females, the birth rate was lower than among the 1G controls. Immunostaining demonstrated that in vitro culture under µG caused slower development and fewer trophectoderm cells than in 1G controls but did not affect polarization of the blastocyst. These results suggest for the first time that fertilization can occur normally under µG environment in a mammal, but normal preimplantation embryo development might require 1G.  相似文献   

5.
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca2+ concentration and release of diverse metabolites (e.g., NAD+ and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.  相似文献   

6.
本研究旨在探讨利用模拟微重力效应研究微重力对果蝇运动及睡眠影响的可行性.通过研制能够在模拟微重力环境下实时监测果蝇行为的随机定位仪,监测短时间(3 d)模拟微重力处理过程中,及长时间(10 d、20 d、30 d)处理后雄蝇运动和睡眠的变化;选取受影响较显著的短时间处理组,研究模拟微重力效应对生物钟核心基因(period (per)、timeless(tim)、clock (clk)、cycle (cyc)、cryptochrome (cry))、神经递质多巴胺(dopamine,DA)和5-羟色胺(5-hydroxytryptamine,5-HT)关键合成酶(多巴脱羧酶、酪氨酸羟化酶、色氨酸羟化酶)的编码基因ddc、pale和trh表达水平及DA和5-HT含量的影响.结果显示:短时间暴露下,雄蝇夜晚的运动量增加、单位时间运动次数增加、睡眠时间和次数减少、生物钟基因tim、clk、cyc、cry及神经递质合成相关编码基因ddc、pale和trh的表达水平均显著上升;长时间处理后对雄蝇运动和睡眠的影响较小.本研究认为利用模拟微重力效应研究微重力对果蝇运动及睡眠的影响是可行的,相关研究结果对航天医学研究具有借鉴意义.  相似文献   

7.
8.
In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA''s rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing.  相似文献   

9.
血管内皮作为血管壁的衬里,参与调节组织器官的局部血流和机体其它生理进程,在维持血管完整性和内环境稳定中发挥关键作用。内皮细胞对包括重力在内的机械应力刺激极为敏感,重力变化可对其形态和功能构成不同程度的影响。研究发现,失重/模拟失重通过诱导内皮细胞细胞骨架重塑、质膜caveolae重布,使其合成分泌血管活性物质、炎性介质的能力以及细胞表面粘附分子表达发生改变,这些分子变化又对内皮细胞的生长、增殖、凋亡、迁移和血管生成等具有精细调控作用。本文综合评述了失重/模拟失重对内皮细胞功能的影响,同时围绕文献报道中一些尚存争议的观点进行了适当讨论。  相似文献   

10.
电磁场对完整和去膜青蛙肌纤维作用的比较研究表明,交变电场通过改变膜电位引起肌肉收缩,在此过程中收缩蛋白质的空间位置而非自身构象发生变化,横桥尤其是S-2片段,在伴随横桥从弱耦合状态向强耦合状态过渡时远离粗肌丝而向细肌丝运动,使其与粗肌丝骨架的平均取向比松弛状态或静息状态时相对增大.一般强度恒定磁场对肌纤维膜电位状态及肌纤维内部蛋白质分子的运动及其相互作用影响极其微弱.  相似文献   

11.
对正常条件和模拟微重力条件下拟南芥幼苗的生长状况进行了研究,发现拟南芥幼苗的生长发育、生理生化特性、酶活性等均发生一系列的变化.并利用qRT-PCR技术深入研究了经模拟微重力处理的幼苗过氧化物酶的基因表达量的变化.这些结果为植物在受控生态生保系统中的生长提供了试验支持.  相似文献   

12.
Russian Journal of Developmental Biology - The mechanisms of the interaction between cells and the gravitational field are still unknown, and there are hardly any data on the effect of the gravity...  相似文献   

13.
用回转器旋转鸡胚蛋研究对脑细胞的模拟微重力生物效应.采用连续荧光法测量孵化10 d(E10)和孵化13 d(E13)鸡胚的脑细胞谷氨酸的初始释放速率、在KCl去极化及单个电脉冲刺激后的释放速率和释放量以及谷氨酸的含量,并对旋转处理组和静止对照组进行了比较.结果如下:旋转组和对照组脑细胞的谷氨酸初始释放速率没有显著差异,E10鸡胚经24 h旋转后,在KCl刺激下脑细胞的谷氨酸释放速率和释放量皆高于对照组,经4 h旋转后谷氨酸含量显著增高(P<0.01);但旋转24 h的E13鸡胚上述指标皆无显著改变,表明微重力对鸡胚脑细胞神经递质释放的影响与胚龄有关.鸡胚脑细胞在电脉冲刺激下谷氨酸释放的动态过程表明:脉冲电场引起的谷氨酸释放与细胞内钙离子迅速增加有关.  相似文献   

14.

Background

Growing cells in simulated weightlessness condition might be a highly promising new technique to maintain or generate tissue constructs in a scaffold-free manner. There is limited evidence that microgravity condition may affect development of ovarian follicles. The objective of the present study was to investigate the effects of simulated microgravity on the in vitro development of mouse preantral follicles.

Methods and Results

Ovarian tissue from 14-day-old mice, or preantral follicles mechanically isolated from 14-day-old mouse ovaries were cultured at a simulated microgravity condition generated using a rotating wall vessel apparatus. Follicle survival was assessed quantitatively using H&E staining. Follicle diameter and oocyte diameter were measured under an inverted microscope. Ultrastructure of oocytes was evaluated using transmission electron microscopy. We observed that simulated microgravity compromised follicle survival in vitro, downregulated PCNA and GDF-9 expressions, and caused ultrastructural abnormalities in oocytes.

Conclusion

This study showed for the first time that three-dimensional culture condition generated by simulated microgravity is detrimental to the initial stage development of mouse preantral follicles in vitro. The experimental setup provides a model to further investigate the mechanisms involved in the in vitro developmental processes of oocytes/granulosa cells under the microgravity condition.  相似文献   

15.
模拟微重力条件下心肌细胞的体外三维固定化培养   总被引:5,自引:0,他引:5  
观察心肌细胞体外培养形成三维(3D)组织结构的能力和过程及心肌细胞在模拟微重力状态下的3D固定化培养效果。应用酶消化法从新生的乳鼠心室肌组织获取心肌细胞,以Cytodex3为心肌细胞的3D固定化培养载体,将心肌细胞固定化培养于Spinnerflask中,用扫描电镜观察心肌细胞体外培养形成的3D组织结构;以心肌细胞的代谢效率和细胞搏动强度为观察指标,比较心肌细胞在Spinnerflask及HARV(highaspectratevessel)生物反应器中3D固定化培养的差异。结果显示,心肌细胞不仅能贴附于Cytodex3上生长,且形成了具有同步自律收缩的3D组织样结构;心肌细胞在两种不同培养体系中的细胞接种效率和细胞形态没有明显差异,培养于HARV中的心肌细胞的代谢效率和细胞搏动强度均明显高于Spinnerflask培养体系。体外培养的乳鼠心肌细胞具有形成同步自律收缩的3D组织结构的能力;模拟微重力的培养环境有利于改善心肌细胞3D组织样培养物的代谢和功能 。  相似文献   

16.
17.
18.
Cl currents (I Cl) were measured in short fibers (1–2 mm) from the lumbricalis muscle of toads (Bufo arenarum) with two microelectrodes (15°C). Initially the fibers were equilibrated in a high K+-containing solution: (mm) K2SO4 68; Na2SO4 20; KCl 60; CaSO4 8; MgSO4 1; HEPES 2.5. Constant pulses were applied when all the external K+ was replaced by Cs+: Cs2SO4 68; Na2SO4 20; CsCl 60; CaSO4 8; HEPES 2.5 (pH 7.5). Under these conditions about 80–90% of the current is carried by Cl. The current-voltage relation is almost linear implying constant conductance and hence voltage-independent permeability. The voltage dependence of the net Cl current could be fitted by constant field equation with a P Cl of 3.3 × 10−6 cm/sec. In a separate group of experiments a two-pulse technique was used to estimate the availability and the inactivation of the initial I Cl during a test pulse. After returning the potential to the holding potential for various times, test pulses of the same amplitude and duration of the prepulses were applied. The initial current during the test pulse was 70% of the initial current during the prepulse and the recovery was complete in less than 300 msec with a linear relationship between the current during the test pulse and the amplitude of the preceding prepulse. When the test pulses were preceded by a positive prepulse, the initial current for any given test pulse was larger than with a negative prepulse. If we assumed that the initial current during the test pulse is a measure of the number of channels open at the end of the prepulse, these results suggest that hyperpolarizing pulses inactivate and depolarizing prepulses activate the I Cl. Received: 31 March 1995/Revised: 27 October 1995  相似文献   

19.
目的:研究3周模拟失重大鼠颈总动脉平滑肌细胞凋亡的变化及间断性人工重力对其的影响。方法:以尾部悬吊大鼠(SUS)模拟失重,同期每天悬吊23h、站立1h(STD)模拟间断性人工重力的对抗效果,用M30染色及Tunel染色方法观察3周SUS组、同步对照(CON)组及STD组颈总动脉平滑肌细胞早期和中晚期的凋亡情况,并用免疫组织化学方法及Western blot印迹方法观察各组大鼠颈总动脉组织Caspase-3的蛋白表达变化。结果:与CON组比较,SUS组大鼠颈总动脉平滑肌细胞M30染色阳性细胞明显减少,STD组M30染色阳性细胞较CON组及SUS组显著增加;SUS组Tunel染色阳性细胞较CON组及STD组显著减少,STD组Tunel染色阳性细胞较CON组及SUS组显著增加;SUS组Caspase-3的表达较CON组显著降低(P<0.05),STD组Caspase-3的表达较CON组及SUS组显著增高(P<0.01)。结论:模拟失重可引起大鼠颈总动脉平滑肌细胞凋亡减少,每日1 h的-Gx对抗使颈总动脉的凋亡增加。Caspase-3可能在调控模拟失重所致血管组织平滑肌细胞的凋亡中发挥作用。  相似文献   

20.
党凯  高云芳 《动物学杂志》2016,51(3):497-506
非冬眠动物的骨骼肌在废用条件下会发生明显的萎缩。冬眠动物在历经数月的冬眠期骨骼肌废用后,仍能保持较完整的形态结构与良好的收缩功能,成为天然的抗废用性肌萎缩动物模型。探明冬眠动物骨骼肌对废用的生理适应机制,是生理生态学领域的重要课题之一。本文从形态结构、肌纤维类型和收缩功能等方面综述了冬眠动物对冬眠期骨骼肌废用状态的生理适应,并从蛋白质代谢、生长与分化的调控、代谢类型的调控、氧化应激以及线粒体结构与氧化能力等方面分析了冬眠期骨骼肌生理适应的可能机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号