首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+/H+ exchanger isoform 1 is a ubiquitously expressed integral membrane protein. It resides on the plasma membrane of cells and regulates intracellular pH in mammals by extruding an intracellular H+ in exchange for one extracellular Na+. We characterized structural and functional aspects of the transmembrane segment (TM) VI (residues 227–249) by using cysteine scanning mutagenesis and high resolution NMR. Each residue of TM VI was mutated to cysteine in the background of the cysteineless NHE1 protein, and the sensitivity to water-soluble sulfhydryl-reactive compounds (2-(trimethylammonium)ethyl)methanethiosulfonate (MTSET) and (2-sulfonatoethyl)methanethiosulfonate (MTSES) was determined for those residues with significant activity remaining. Three residues were essentially inactive when mutated to Cys: Asp238, Pro239, and Glu247. Of the remaining residues, proteins with the mutations N227C, I233C, and L243C were strongly inhibited by MTSET, whereas amino acids Phe230, Gly231, Ala236, Val237, Ala244, Val245, and Glu248 were partially inhibited by MTSET. MTSES did not affect the activity of the mutant NHE1 proteins. The structure of a peptide representing TM VI was determined using high resolution NMR spectroscopy in dodecylphosphocholine micelles. TM VI contains two helical regions oriented at an approximate right angle to each other (residues 229–236 and 239–250) surrounding a central unwound region. This structure bears a resemblance to TM IV of the Escherichia coli protein NhaA. The results demonstrate that TM VI of NHE1 is a discontinuous pore-lining helix with residues Asn227, Ile233, and Leu243 lining the translocation pore.  相似文献   

2.
Plant vacuolar Na+/H+ antiporters play important roles in maintaining cellular ion homeostasis and mediating the transport of Na+ out of the cytosol and into the vacuole. Vacuolar antiporters have been shown to play significant roles in salt tolerance; however the relatively low Vmax of the Na+/H+ exchange of the Na+/H+ antiporters identified could limit its application in the molecular breeding of salt tolerant crops. In this study, we applied DNA shuffling methodology to generate and recombine the mutations of Arabidopsis thaliana vacuolar Na+/H+ antiporter gene AtNHX1. Screening using a large scale yeast complementation system identified AtNHXS1, a novel Na+/H+ antiporter. Expression of AtNHXS1 in yeast showed that the antiporter localized to the vacuolar membrane and that its expression improved the tolerance of yeast to NaCl, KCl, LiCl, and hygromycin B. Measurements of the ion transport activity across the intact yeast vacuole demonstrated that the AtNHXS1 protein showed higher Na+/H+ exchange activity and a slightly improved K+/H+ exchange activity.  相似文献   

3.
Membrane pyrophosphatases (PPases), divided into K(+)-dependent and K(+)-independent subfamilies, were believed to pump H(+) across cell membranes until a recent demonstration that some K(+)-dependent PPases function as Na(+) pumps. Here, we have expressed seven evolutionarily important putative PPases in Escherichia coli and estimated their hydrolytic, Na(+) transport, and H(+) transport activities as well as their K(+) and Na(+) requirements in inner membrane vesicles. Four of these enzymes (from Anaerostipes caccae, Chlorobium limicola, Clostridium tetani, and Desulfuromonas acetoxidans) were identified as K(+)-dependent Na(+) transporters. Phylogenetic analysis led to the identification of a monophyletic clade comprising characterized and predicted Na(+)-transporting PPases (Na(+)-PPases) within the K(+)-dependent subfamily. H(+)-transporting PPases (H(+)-PPases) are more heterogeneous and form at least three independent clades in both subfamilies. These results suggest that rather than being a curious rarity, Na(+)-PPases predominantly constitute the K(+)-dependent subfamily. Furthermore, Na(+)-PPases possibly preceded H(+)-PPases in evolution, and transition from Na(+) to H(+) transport may have occurred in several independent enzyme lineages. Site-directed mutagenesis studies facilitated the identification of a specific Glu residue that appears to be central in the transport mechanism. This residue is located in the cytoplasm-membrane interface of transmembrane helix 6 in Na(+)-PPases but shifted to within the membrane or helix 5 in H(+)-PPases. These results contribute to the prediction of the transport specificity and K(+) dependence for a particular membrane PPase sequence based on its position in the phylogenetic tree, identity of residues in the K(+) dependence signature, and position of the membrane-located Glu residue.  相似文献   

4.
The Na+/H+ exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by extruding an intracellular H+ in exchange for one extracellular Na+. In this study we examined the effect of site-specific mutagenesis on the pore-lining amino acid Phe161 and effects of mutagenesis on the charged amino acids Asp159 and Asp172. There was no absolute requirement for a carboxyl side chain at amino acid Asp159 or Asp172. Mutation of Asp159 to Asn or Gln maintained or increased the activity of the protein. Similarly, for Asp172, substitution with a Gln residue maintained activity of the protein, even though substitution with an Asn residue was inhibitory. The Asp172Glu mutant possessed normal activity after correction for its aberrant expression and surface targeting. Replacement of Phe161 with a Leu demonstrated that it was not irreplaceable in NHE1 function. However, the mutation Phe161lys inhibited NHE1 function, while the Phe161Ala mutation caused altered NHE1 targeting and expression levels. Our results show that these three amino acids, while being important in NHE1 function, are not irreplaceable. This study demonstrates that multiple substitutions at a single amino acid residue may be necessary to get a clearer picture membrane protein function.  相似文献   

5.
NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na+/H+ exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na+/H+ exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.  相似文献   

6.
7.
8.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   

9.
The multivesicular body (MVB) is an endosomal intermediate containing intralumenal vesicles destined for membrane protein degradation in the lysosome. In Saccharomyces cerevisiae, the MVB pathway is composed of 17 evolutionarily conserved ESCRT (endosomal sorting complex required for transport) genes grouped by their vacuole protein sorting Class E mutant phenotypes. Only one integral membrane protein, the endosomal Na+ (K+)/H+ exchanger Nhx1/Vps44, has been assigned to this class, but its role in the MVB pathway has not been directly tested. Herein, we first evaluated the link between Nhx1 and the ESCRT proteins and then used an unbiased phenomics approach to probe the cellular role of Nhx1. Select ESCRT mutants (vps36Δ, vps20Δ, snf7Δ, and bro1Δ) with defects in cargo packaging and intralumenal vesicle formation shared multiple growth phenotypes with nhx1Δ. However, analysis of cellular trafficking and ultrastructural examination by electron microscopy revealed that nhx1Δ cells retain the ability to sort cargo into intralumenal vesicles. In addition, we excluded a role for Nhx1 in Snf7/Bro1-mediated cargo deubiquitylation and Rim101 response to pH stress. Genetic epistasis experiments provided evidence that NHX1 and ESCRT genes function in parallel. A genome-wide screen for single gene deletion mutants that phenocopy nhx1Δ yielded a limited gene set enriched for endosome fusion function, including Rab signaling and actin cytoskeleton reorganization. In light of these findings and the absence of the so-called Class E compartment in nhx1Δ, we eliminated a requirement for Nhx1 in MVB formation and suggest an alternative post-ESCRT role in endosomal membrane fusion.  相似文献   

10.
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.  相似文献   

11.
Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K(+) affinity of the RPE-expressed α1-Na(+)/K(+)-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.  相似文献   

12.
13.
Sod2 is the Na+/H+ exchanger of the fission yeast Schizosaccharomyces pombe that is principally responsible for salt tolerance. We examined the role of nine polar, membrane associated amino acids in the ability of the protein to confer salt tolerance in S. pombe. Wild type sod2 protein with a C-terminal GFP tag effectively rescued salt tolerance in S. pombe with deleted endogenous sod2. Sod2 protein with the mutations P163A, P183A, D298N, D389N, E390Q, E392Q and E397Q also conveyed salt tolerance as effectively as the wild type sod2 protein. In contrast, the mutation P146A resulted in a protein that did not convey salt tolerance nearly as effectively as the wild type and did not extrude Na+ as well as the wild type. Mutation of Pro146 to Ser, Asp or Lys had an intermediate effect. Mutation of Thr142 to Ser resulted in a slightly defective protein. Western blot analysis showed that all mutant proteins were expressed at similar levels as wild type sod2 protein. Examination of the localization of the proteins showed that wild type and most sod2 mutants were present in the plasma membrane while the P146A mutant had an intracellular localization. Limited tryptic digestion suggested that the P146A sod2 protein had a change in conformation in comparison to the wild type protein. The results suggest that Pro146 is an amino acid critical to sod2 structure, function and localization.  相似文献   

14.
The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (K d ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels.  相似文献   

15.
Ion channels of the degenerin/epithelial Na+ channel gene family are Na+ channels that are blocked by the diuretic amiloride and are implicated in several human diseases. The brain liver intestine Na+ channel (BLINaC) is an ion channel of the degenerin/epithelial Na+ channel gene family with unknown function. In rodents, it is expressed mainly in brain, liver, and intestine, and to a lesser extent in kidney and lung. Expression of rat BLINaC (rBLINaC) in Xenopus oocytes leads to small unselective currents that are only weakly sensitive to amiloride. Here, we show that rBLINaC is inhibited by micromolar concentrations of extracellular Ca2+. Removal of Ca2+ leads to robust currents and increases Na+ selectivity of the ion pore. Strikingly, the species ortholog from mouse (mBLINaC) has an almost 250-fold lower Ca2+ affinity than rBLINaC, rendering mBLINaC constitutively active at physiological concentrations of extracellular Ca2+. In addition, mBLINaC is more selective for Na+ and has a 700-fold higher amiloride affinity than rBLINaC. We show that a single amino acid in the extracellular domain determines these profound species differences. Collectively, our results suggest that rBLINaC is opened by an unknown ligand whereas mBLINaC is a constitutively open epithelial Na+ channel.  相似文献   

16.
Ca2+ (sarco-endoplasmic reticulum Ca2+ ATPase (SERCA)) and Cu+ (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca2+, demonstrated by the addition of ATP and Ca2+ to SERCA deprived of Ca2+ (E2) as compared with ATP to Ca2+-activated enzyme (E1·2Ca2+). Activation by Ca2+ is slower at low pH (2H+·E2 to E1·2Ca2+) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca2+ translocation. A “H+-gated pathway,” demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca2+ release by H+/Ca2+ exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu+/H+ exchange. As opposed to SERCA after Ca2+ chelation, ATP7A/B does not undergo reverse phosphorylation with Pi after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.  相似文献   

17.
Rotary catalysis in F1F0 ATP synthase is powered by proton translocation through the membrane-embedded F0 sector. Proton binding and release occur in the middle of the membrane at Asp-61 on the second transmembrane helix (TMH) of subunit c, which folds in a hairpin-like structure with two TMHs. Previously, the aqueous accessibility of Cys substitutions in the transmembrane regions of subunit c was probed by testing the inhibitory effects of Ag+ or Cd2+ on function, which revealed extensive aqueous access in the region around Asp-61 and on the half of TMH2 extending to the cytoplasm. In the current study, we surveyed the Ag+ and Cd2+ sensitivity of Cys substitutions in the loop of the helical hairpin and used a variety of assays to categorize the mechanisms by which Ag+ or Cd2+ chelation with the Cys thiolates caused inhibition. We identified two distinct metal-sensitive regions in the cytoplasmic loop where function was inhibited by different mechanisms. Metal binding to Cys substitutions in the N-terminal half of the loop resulted in an uncoupling of F1 from F0 with release of F1 from the membrane. In contrast, substitutions in the C-terminal half of the loop retained membrane-bound F1 after metal treatment. In several of these cases, inhibition was shown to be due to blockage of passive H+ translocation through F0 as assayed with F0 reconstituted into liposomes. The results suggest that the C-terminal domain of the cytoplasmic loop may function in gating H+ translocation to the cytoplasm.  相似文献   

18.
The binding of Ca(2+) to two adjacent Ca(2+)-binding domains, CBD1 and CBD2, regulates ion transport in the Na(+)/Ca(2+) exchanger. As sensors for intracellular Ca(2+), the CBDs form electrostatic switches that induce the conformational changes required to initiate and sustain Na(+)/Ca(2+) exchange. Depending on the presence of a few key residues in the Ca(2+)-binding sites, zero to four Ca(2+) ions can bind with affinities between 0.1 to 20 μm. Importantly, variability in CBD2 as a consequence of alternative splicing modulates not only the number and affinities of the Ca(2+)-binding sites in CBD2 but also the Ca(2+) affinities in CBD1.  相似文献   

19.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

20.
Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys66 as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. 1H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys66 for the epimerization reaction with participation of neighboring Arg43, Asp126, and Glu180 residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号