首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In neurons, a highly regulated microtubule cytoskeleton is essential for many cellular functions. These include axonal transport, regional specialization and synaptic function. Given the critical roles of microtubule-associated proteins (MAPs) in maintaining and regulating microtubule stability and dynamics, we sought to understand how this regulation is achieved. Here, we identify a novel LisH/WD40 repeat protein, tentatively named nemitin (neuronal enriched MAP interacting protein), as a potential regulator of MAP8-associated microtubule function. Based on expression at both the mRNA and protein levels, nemitin is enriched in the nervous system. Its protein expression is detected as early as embryonic day 11 and continues through adulthood. Interestingly, when expressed in non-neuronal cells, nemitin displays a diffuse pattern with puncta, although at the ultrastructural level it localizes along the microtubule network in vivo in sciatic nerves. These results suggest that the association of nemitin to microtubules may require an intermediary protein. Indeed, co-expression of nemitin with microtubule-associated protein 8 (MAP8) results in nemitin losing its diffuse pattern, instead decorating microtubules uniformly along with MAP8. Together, these results imply that nemitin may play an important role in regulating the neuronal cytoskeleton through an interaction with MAP8.  相似文献   

2.
A key event in neurite initiation is the accumulation of microtubule bundles at the neuron periphery. We hypothesized that such bundled microtubules may generate a force at the plasma membrane that facilitates neurite initiation. To test this idea we observed the behavior of microtubule bundles that were induced by the microtubule-associated protein MAP2c. Endogenous MAP2c contributes to neurite initiation in primary neurons, and exogeneous MAP2c is sufficient to induce neurites in Neuro-2a cells. We performed nocodazol washout experiments in primary neurons, Neuro-2a cells and COS-7 cells to investigate the underlying mechanism. During nocodazol washout, small microtubule bundles formed rapidly in the cytoplasm and immediately began to move toward the cell periphery in a unidirectional manner. In neurons and Neuro-2a cells, neurite-like processes extended within minutes and concurrently accumulated bundles of repolymerized microtubules. Speckle microscopy in COS-7 cells indicated that bundle movement was due to transport, not treadmilling. At the periphery bundles remained under a unidirectional force and induced local cell protrusions that were further enhanced by suppression of Rho kinase activity. Surprisingly, this bundle motility was independent of classical actin- or microtubule-based tracks. It was, however, reversed by function-blocking antibodies against dynein. Suppression of dynein expression in primary neurons by RNA interference severely inhibited the generation of new neurites, but not the elongation of existing neurites formed prior to dynein knockdown. Together, these cell biological data suggest that neuronal microtubule-associated proteins induce microtubule bundles that are pushed outward by dynein and locally override inward contraction to initiate neurite-like cell protrusions. A similar force-generating mechanism might participate in spontaneous initiation of neurites in developing neurons. Electronic Supplementry Materials: Supplementary Materials are available in the online version of this article at  相似文献   

3.
A major determinant of neuronal morphology is the cytoskeleton. And one of the main regulatory mechanisms of cytoskeletal proteins is the modification of their phosphorylation state via changes in the relative activities of protein kinases and phosphatases in neurons. In particular, the microtubule-associated protein 2 (MAP2) family of proteins are abundant cytoskeletal components predominantly expressed in neurons and have been found to be substrates for most of protein kinases and phosphatases present in neurons, including glycogen-synthase kinase 3 (GSK3). It has been suggested that changes in GSK3-mediated MAP phosphorylation may modify MT stability and could control neuronal development. We have previously shown that MAP2 is phosphorylated in vitro and in situ by GSK3 at Thr1620 and Thr1623, located in the proline-rich region of MAP2 and recognized by antibody 305. However, the function of the phosphorylation of this site of MAP2 is still unknown. In this study, non-neuronal COS-1 cells have been co-transfected with cDNAs encoding MAP2C and either wild type or mutated GSK3beta to analyze possible effects on microtubule stability and on the association of MAP2 with microtubules. We have found that GSK3beta phosphorylates MAP2C in co-transfected cells. Moreover, this phosphorylation is inhibited by the specific GSK3 inhibitor lithium chloride. Additionally, the formation of microtubule bundles, which is observed after transfection with MAP2C, was decreased when MAP2C was co-transfected with GSK3beta wild type. Microtubule bundles were not observed in cells expressing MAP2C phosphorylated at the site recognized by antibody 305. The absence of microtubule bundles was reverted after treatment of MAP2C/GSK3beta wild type transfected cells with lithium chloride. Highly phosphorylated MAP2C species, which were phosphorylated at the site recognized by antibody 305, appeared in cells co-transfected with MAP2C and GSK3beta wild type. Interestingly, these MAP2C species were enriched in cytoskeleton-unbound protein preparations. These data suggests that GSK3-mediated phosphorylation of MAP2 may modify its binding to microtubules and regulate microtubule stability.  相似文献   

4.
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

5.
《朊病毒》2013,7(4):334-338
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

6.
The axonal shafts of neurons contain bundled microtubules, whereas extending growth cones contain unbundled microtubule filaments, suggesting that localized activation of microtubule-associated proteins (MAP) at the transition zone may bundle these filaments during axonal growth. Dephosphorylation is thought to lead to MAP activation, but specific molecular pathways have remained elusive. We find that Spinophilin, a Protein-phosphatase 1 (PP1) targeting protein, is responsible for the dephosphorylation of the MAP Doublecortin (Dcx) Ser 297 selectively at the "wrist" of growing axons, leading to activation. Loss of activity at the "wrist" is evident as an impaired microtubule cytoskeleton along the shaft. These findings suggest that spatially restricted adaptor-specific MAP reactivation through dephosphorylation is important in organization of the neuronal cytoskeleton.  相似文献   

7.
Doublecortin (DCX) is a microtubule-associated protein that is specifically expressed in neuronal cells. Genetic mutation of DCX causes lissencephaly disease. Although the abnormal cortical lamination in lissencephaly is thought to be attributable to neuronal cell migration defects, the regulatory mechanisms governing interactions between DCX and cytoskeleton in the migration of neuronal progenitor cells remain obscure. In this study we found that the G(s) and protein kinase A (PKA) signal elicited by pituitary adenylate cyclase-activating polypeptide promotes neuronal progenitor cells migration. Stimulation of G(s)-PKA signaling prevented microtubule bundling and induced the dissociation of DCX from microtubules in cells. PKA phosphorylated DCX at Ser-47, and the phospho-mimicking mutant DCX-S47E promoted cell migration. Activation of PKA and DCX-S47E induced lamellipodium formation. Pituitary adenylate cyclase-activating polypeptide and DCX-S47E stimulated the activation of Rac1, and DCX-S47E interacted with Asef2, a guanine nucleotide exchange factor for Rac1. Our data reveal a dual reciprocal role for DCX phosphorylation in the regulation of microtubule and actin dynamics that is indispensable for proper brain lamination.  相似文献   

8.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

9.
Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.  相似文献   

10.
Mitogen-activated protein kinase (MAPK) is activated by many kinds of stimuli and plays an important role in integrating signal transduction cascades. MAPK is present abundantly in brain, where we have studied its association with microtubules. Immunofluorescence of primary hippocampal neurons revealed that MAPK staining co-localized with microtubules and biochemical analyses showed that MAPK co-purified with microtubules. Approximately 4% of MAPK in cytosolic extracts was associated with microtubules, where it was associated with both tubulin and microtubule-associated proteins (MAPs) fractions. Further fractionation of MAPs suggested that a portion of MAPK is associated with MAP2. An association with MAP2 was also demonstrated by co-immunoprecipitation and in vitro binding experiments. A similar association was shown for the juvenile MAP2 isoform, MAP2C. The pool of MAPK associated with microtubules had a higher activity relative to the nonassociated pool in both brain and proliferating PC12 cells. Although MAPK was activated by nerve growth factor in PC12 cells, the activity of microtubule-associated MAPK did not further increase. These results raise the possibility that microtubule-associated MAPK operates through constitutive phosphorylation activity to regulate microtubule function in neurons.  相似文献   

11.
BACKGROUND: MAP2 and tau are abundant microtubule-associated proteins (MAPs) in neurons. The development of neuronal dendrites and axons requires a dynamic interaction between microtubules and actin filaments. MAPs represent good candidates to mediate such interactions. Although MAP2c and tau have similar, well-characterized microtubule binding activities, their actin interaction is poorly understood. RESULTS: Here, we show by using a cosedimentation assay that MAP2c binds F-actin. Upon actin binding, MAP2c organizes F-actin into closely packed actin bundles. Moreover, we show by using a deletion approach that MAP2c's microtubule binding domain (MTBD) is both necessary and sufficient for both F-actin binding and bundling activities. Surprisingly, even though the MAP2 and tau MTBDs share high sequence homology and possess similar microtubule binding activities, tau is unable to bind or bundle F-actin. Furthermore, experiments with chimeric proteins demonstrate that the actin binding activity fully correlates with the ability to promote neurite initiation in neuroblastoma cells. CONCLUSIONS: These results provide the first demonstration that the MAP2c and tau MTBD domains exhibit distinct properties, diverging in actin binding and neurite initiation activities. These results implicate a novel actin function for MAP2c in neuronal morphogenesis and furthermore suggest that actin interactions could contribute to functional differences between MAP2 and tau in neurons.  相似文献   

12.
13.
Microtubule-associated protein 2c (MAP2c) is one of a set of embryonic MAP forms that are expressed during neuronal differentiation in the developing nervous system. We have investigated its mode of action by expressing recombinant protein in non-neuronal cell lines using cell cDNA transfection techniques. At every level of expression, all the MAP2c was bound to cellular microtubules. At low MAP2c levels, the microtubules retained their normal arrangement, radiating from the centrosomal microtubule-organising centre (MTOC) but at higher levels an increasing proportion of microtubules occurred independently of the MTOC. In most cells, radially oriented microtubules still attached to the MTOC co-existed with detached microtubules, suggesting that the primary effect of MAP2 is to increase the probability that tubulin polymerisation will occur independently of the MTOC. The MTOC-independent microtubules formed bundles whose distribution depended on their length in relation to the diameter of the transfected cell. Short bundles were attached to the cell cortex at one end and followed a straight course through the cytoplasm, whereas longer bundles followed a curved path around the periphery of the cell. By comparing these patterns to those produced by two chemical agents that stabilise microtubules, taxol and dimethyl sulphoxide, we conclude that effects of MAP2c arise from two sources. It stabilises microtubules without providing assembly initiation sites and as a result produces relatively few, long microtubule bundles. These bend only when they encounter the restraining influence of the cortical cytoskeleton of the cell, indicating that MAP2c also imparts stiffness to them. By conferring these properties of stability and stiffness to neuronal microtubules MAP2c contributes to supporting the structure of developing neurites.  相似文献   

14.
MAP1B and MAP2 are major members of neuronal microtubule-associated proteins (MAPs). To gain insights into the function of MAP2 in vivo, we generated MAP2-deficient (map2(-/-)) mice. They developed without any apparent abnormalities, which indicates that MAP2 is dispensable in mouse survival. Because previous reports suggest a functional redundancy among MAPs, we next generated mice lacking both MAP2 and MAP1B to test their possible synergistic functions in vivo. Map2(-/-)map1b(-/-) mice died in their perinatal period. They showed not only fiber tract malformations but also disrupted cortical patterning caused by retarded neuronal migration. In spite of this, their cortical layer maintained an "inside-out" pattern. Detailed observation of primary cultures of hippocampal neurons from map2(-/-)map1b(-/-) mice revealed inhibited microtubule bundling and neurite elongation. In these neurons, synergistic effects caused by the loss of MAP2 and MAP1B were more apparent in dendrites than in axons. The spacing of microtubules was reduced significantly in map2(-/-)map1b(-/-) mice in vitro and in vivo. These results suggest that MAP2 and MAP1B have overlapping functions in neuronal migration and neurite outgrowth by organizing microtubules in developing neurons both for axonal and dendritic morphogenesis but more dominantly for dendritic morphogenesis.  相似文献   

15.
In the present study, we report the existence of four tau-related microtubule-associated proteins (MAPs) of 48, 50, 55 and 58 kDa in a pancreatic exocrine cell line (AR4-2J). Using immunofluorescence, we demonstrate that these tau-related MAPs are associated with microtubules in AR4-2J cells. That colocalization is particularly striking on microtubules bundles in cellular extensions and is the first evidence for tau-related MAPs colocalization with microtubules in non-neuronal cells. As it has been often discussed for neuronal tau, the localization of tau-related proteins in AR4-2J cells suggests that these proteins may be involved in microtubule bundling.  相似文献   

16.
Microtubule-associated protein 1B (MAP1B) is a classical high molecular mass microtubule-associated protein expressed at high levels in the brain. It confers specific properties to neuronal microtubules and is essential for neuronal differentiation, brain development and synapse maturation. Misexpression of the protein contributes to the development of brain disorders in humans. However, despite numerous reports demonstrating the importance of MAP1B in regulation of the neuronal cytoskeleton during neurite extension and axon guidance, its mechanism of action is still elusive. Here we focus on the intrinsically disordered microtubule binding domain of the light chain of MAP1B. In order to obtain more detailed structural information about this domain we assigned NMR chemical shifts of backbone and aliphatic side chain atoms.  相似文献   

17.
The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.  相似文献   

18.
Two monoclonal antibodies, 5E6 and 1B6, were raised against microtubule-associated protein 1B (MAP1B), a major component of the neuronal cytoskeleton. 5E6 recognized the entire MAP1B population, while 1B6 detected only phosphorylated forms. Affinity-purified MAP1B appeared as a long, filamentous molecule (186 +/- 38 nm) with a small spherical portion at one end, forming long cross-bridges between microtubules in vitro. These results, together with in vivo data from immunogold methods, demonstrate that MAP1B is a component of cross-bridges between microtubules in neurons. By immunohistochemical analysis, phosphorylated forms were shown to exist mainly in axons, whereas unphosphorylated forms were limited to cell bodies and dendrites. Phosphorylated MAP1B was quite abundant in developing axons, suggesting its essential role in axonal elongation.  相似文献   

19.
Microtubules are flexible polymers whose mechanical properties are an important factor in the determination of cell architecture and function. It has been proposed that the two most prominent neuronal microtubule-associated proteins (MAPs), tau and MAP2, whose microtubule binding regions are largely homologous, make an important contribution to the formation and maintenance of neuronal processes, putatively by increasing the rigidity of microtubules. Using optical tweezers to manipulate single microtubules, we have measured their flexural rigidity in the presence of various constructs of tau and MAP2c. The results show a three- or fourfold increase of microtubule rigidity in the presence of wild-type tau or MAP2c, respectively. Unexpectedly, even low concentrations of MAPs promote a substantial increase in microtubule rigidity. Thus at ~20% saturation with full-length tau, a microtubule exhibits >80% of the rigidity observed at near saturating concentrations. Several different constructs of tau or MAP2 were used to determine the relative contribution of certain subdomains in the microtubule-binding region. All constructs tested increase microtubule rigidity, albeit to different extents. Thus, the repeat domains alone increase microtubule rigidity only marginally, whereas the domains flanking the repeats make a significant contribution. Overall, there is an excellent correlation between the strength of binding of a MAP construct to microtubules (as represented by its dissociation constant Kd) and the increase in microtubule rigidity. These findings demonstrate that neuronal MAPs as well as constructs derived from them increase microtubule rigidity, and that the changes in rigidity observed with different constructs correlate well with other biochemical and physiological parameters.  相似文献   

20.
Microtubule-associated protein 2 (MAP2) is a major component of cross-bridges between microtubules in dendrites, and is known to stabilize microtubules. MAP2 also has a binding domain for the regulatory subunit II of cAMP-dependent protein kinase (PKA). We found that there is reduction in microtubule density in dendrites and a reduction of dendritic length in MAP2-deficient mice. Moreover, there is a significant reduction of various subunits of PKA in dendrites and total amounts of various PKA subunits in hippocampal tissue and cultured neurons. In MAP2-deficient cultured neurons, the induction rate of phosphorylated CREB after forskolin stimulation was much lower than in wild-type neurons. Therefore, MAP2 is an anchoring protein of PKA in dendrites, whose loss leads to reduced amount of dendritic and total PKA and reduced activation of CREB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号