首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell survival is conditional on the maintenance of a favourable acid–base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid–base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H+-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H+-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H+-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H+/H+-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H+/H+-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.  相似文献   

2.
Some tumours are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a ‘reversed pH gradient’ across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na \(^+\) /H \(^+\) exchanger or a high rate of anaerobic glycolysis can give rise to a “fingering” tumour morphology; and a high activity of the lactate/H \(^+\) symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogenous within the tumour, with a normal pH gradient observed within an intermediate growth layer within the spheroid. We also include a fractal dimension analysis of the simulated tumour contours, in which we compare the fractal dimensions of the simulated tumour surfaces with those found experimentally via photomicrographs.  相似文献   

3.
Monocarboxylate transporters (MCT) and sodium-bicarbonate cotransporters (NBC) transport acid/base equivalents and coexist in many epithelial and glial cells. In nervous systems, the electroneutral MCT1 isoform cotransports lactate and other monocarboxylates with H+, and is believed to be involved in the shuttling of energy-rich substrates between astrocytes and neurons. The NBC cotransports bicarbonate with sodium and generates a membrane current. We have expressed these transporter proteins, cloned from rat brain (MCT1) and human kidney (NBC), alone and together, by injecting the cRNA into oocytes of the frog Xenopus laevis, and measured intracellular pH changes and membrane currents under voltage-clamp with intracellular microelectrodes, and radiolabeled lactate uptake into the oocytes. We determined the cytosolic buffer capacity, the H+ and lactate fluxes as induced by 3 and 10 mM lactate in oocytes expressing MCT1 and/or NBC, and in water-injected oocytes, in salines buffered with 5 mM HEPES alone or with 5% CO2/10 mM HCO3 (pH 7.0). In MCT1 + NBC- but not in MCT1- or NBC-expressing oocytes, lactate activated a Na+- and HCO3-dependent membrane current, indicating that lactate/H+ cotransport via MCT1, due to the induced pH change, stimulates NBC activity. Lactate/H+ cotransport by MCT1 was increased about twofold when MCT1 was expressed together with NBC. Our results suggest that the facilitation of MCT1 transport activity is mainly due to the increase in apparent buffer capacity contributed by the NBC, and thereby suppresses the build-up of intracellular H+ during the influx of lactate/H+, which would reduce MCT1 activity. Hence these membrane transporters functionally cooperate and are able to increase ion/metabolite transport activity.  相似文献   

4.
5.
The H+-coupled transporter hPepT1 (SLC15A1) mediates the transport of di/tripeptides and many orally-active drugs across the brush-border membrane of the small intestinal epithelium. Incubation of Caco-2 cell monolayers (15 min) with the dietary phosphodiesterase inhibitors caffeine and theophylline inhibited Gly-Sar uptake across the apical membrane. Pentoxifylline, a phosphodiesterase inhibitor given orally to treat intermittent claudication, also decreased Gly-Sar uptake through a reduction in capacity (Vmax) without any effect on affinity (Km). The reduction in dipeptide transport was dependent upon both extracellular Na+ and apical pH but was not observed in the presence of the selective Na+/H+ exchanger NHE3 (SLC9A3) inhibitor S1611. Measurement of intracellular pH confirmed that caffeine was not directly inhibiting hPepT1 but rather having an indirect effect through inhibition of NHE3 activity. NHE3 maintains the H+-electrochemical gradient which, in turn, acts as the driving force for H+-coupled solute transport. Uptake of β-alanine, a substrate for the H+-coupled amino acid transporter hPAT1 (SLC36A1), was also inhibited by caffeine. The regulation of NHE3 by non-nutrient components of diet or orally-delivered drugs may alter the function of any solute carrier dependent upon the H+-electrochemical gradient and may, therefore, be a site for both nutrient-drug and drug-drug interactions in the small intestine.  相似文献   

6.
A new kinetic model of the Na+/H+ exchanger (NHE) was developed by fitting a variety of major experimental findings, such as ion-dependencies, forward/reverse mode, and the turnover rate. The role of NHE in ion homeostasis was examined by implementing the NHE model in a minimum cell model including intracellular pH buffer, Na+/K+ pump, background H+, and Na+ fluxes. This minimum cell model was validated by reconstructing recovery of pHi from acidification, accompanying transient increase in [Na+]i due to NHE activity. Based on this cell model, steady-state relationships among pHi, [Na+]I, and [Ca2+]i were quantitatively determined, and thereby the critical level of acidosis for cell survival was predicted. The acidification reported during partial blockade of the Na+/K+ pump was not attributed to a dissipation of the Na+ gradient across the membrane, but to an increase in indirect H+ production. This NHE model, though not adapted to the dimeric behavioral aspects of NHE, can provide a strong clue to quantitative prediction of degree of acidification and accompanying disturbance of ion homeostasis under various pathophysiological conditions.  相似文献   

7.
Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H+-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na+/H+ exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.  相似文献   

8.
The Na+/H+ exchanger (NHE) is a protein expressed in many mammalian cell types. It is involved in intracellular pH (pHi) homeostasis by exchanging extracellular Na+ for intracellular H+. To date, nine NHE isoforms (NHE1–NHE9) have been identified. NHE1 is the most predominant isoform expressed in mammalian cardiac muscle. A novel series of substituted (quinolinecarbonyl)guanidine derivatives were designed and synthesized as NHE inhibitors. Most compounds can inhibit NHE1‐mediated platelet swelling in a concentration‐dependent manner, among which compound 7f was the most active and more potent than cariporide. Furthermore, compound 7f has also been demonstrated to exhibit the in vivo cardioprotective effects against SD rat myocardial ischemic‐reperfusion injury superior to those of cariporide.  相似文献   

9.
The ubiquitous mammalian Na+/H+ exchanger NHE1 has critical functions in regulating intracellular pH, salt concentration, and cellular volume. The regulatory C-terminal domain of NHE1 is linked to the ion-translocating N-terminal membrane domain and acts as a scaffold for signaling complexes. A major interaction partner is calmodulin (CaM), which binds to two neighboring regions of NHE1 in a strongly Ca2+-dependent manner. Upon CaM binding, NHE1 is activated by a shift in sensitivity toward alkaline intracellular pH. Here we report the 2.23 Å crystal structure of the NHE1 CaM binding region (NHE1CaMBR) in complex with CaM and Ca2+. The C- and N-lobes of CaM bind the first and second helix of NHE1CaMBR, respectively. Both the NHE1 helices and the Ca2+-bound CaM are elongated, as confirmed by small angle x-ray scattering analysis. Our x-ray structure sheds new light on the molecular mechanisms of the phosphorylation-dependent regulation of NHE1 and enables us to propose a model of how Ca2+ regulates NHE1 activity.  相似文献   

10.
AMP-activated protein kinase (AMPK) is activated upon energy depletion and serves to restore energy balance by stimulating energy production and limiting energy utilization. Specifically, it enhances cellular glucose uptake by stimulating GLUT and SGLT1 and glucose utilization by stimulating glycolysis. During O2 deficiency glycolytic degradation of glucose leads to formation of lactate and H+, thus imposing an acid load to the energy-deficient cell. Cellular acidification inhibits glycolysis and thus impedes glucose utilization. Maintenance of glycolysis thus requires cellular H+ export. The present study explored whether AMPK influences Na+/H+ exchanger (NHE) activity and/or Na+-independent acid extrusion. NHE1 expression was determined by RT-PCR and Western blotting. Cytosolic pH (pHi) was estimated utilizing BCECF fluorescence and Na+/H+ exchanger activity from the Na+-dependent re-alkalinization (ΔpHi) after an ammonium pulse. As a result, human embryonic kidney (HEK) cells express NHE1. The pHi and ΔpHi in those cells were significantly increased by treatment with AMPK stimulator AICAR (1 mM) and significantly decreased by AMPK inhibitor compound C (10 μM). The effect of AICAR on pHi and ΔpHi was blunted in the presence of the Na+/H+ exchanger inhibitor cariporide (10 μM), but not by the H+ ATPase inhibitor bafilomycin (10 nM). AICAR significantly enhanced lactate formation, an effect significantly blunted in the presence of cariporide. These observations disclose a novel function of AMPK, i.e. regulation of cytosolic pH.  相似文献   

11.
Clinical features characterizing Angelman syndrome, previously shown to be caused by disruption of UBE3A, were recently also described in neurologically disabled patients with mutations in SLC9A6, which encodes the Na+/H+ exchanger NHE6. In the present work we have focused on NHE6Δ255-256, the protein product of a specific 6-bp patient deletion in SLC9A6. To resolve the molecular mechanism causing the cellular dysfunction associated with this mutant, we have characterized its intracellular behaviour in comparison to wild type NHE6. Our study demonstrates that NHE6Δ255-256 is much less stable than the wild type protein. Whereas wild type NHE6 is transported to the plasma membrane and early endosomes and remains stable, NHE6Δ255-256 is degraded via two independent pathways mediated by proteasomes and lysosomes, respectively. Depletion of NHE6 had no detectable effect on endosomal pH, but co-depletion of NHE6 and the closely related NHE9 caused enhanced acidification of early endosomes. Our results suggest that NHE6 participates in regulation of endosomal pH and provides a cellular basis for understanding the loss of NHE6 function leading to a neurological phenotype resembling Angelman syndrome.  相似文献   

12.
In polyglutamine diseases, an abnormally elongated polyglutamine results in protein misfolding and accumulation of intracellular aggregates. Autophagy is a major cellular degradative pathway responsible for eliminating unnecessary proteins, including polyglutamine aggregates. Basal autophagy constitutively occurs at low levels in cells for the performance of homeostatic function, but the regulatory mechanism for basal autophagy remains elusive. Here we show that the Na+/H+ exchanger (NHE) family of ion transporters affect autophagy in a neuron-like cell line (Neuro-2a cells). We showed that expression of NHE1 and NHE5 is correlated to polyglutamine accumulation levels in a cellular model of Huntington''s disease, a fatal neurodegenerative disorder characterized by accumulation of polyglutamine-containing aggregate formation in the brain. Furthermore, we showed that loss of NHE5 results in increased polyglutamine accumulation in an animal model of Huntington''s disease. Our data suggest that cellular pH regulation by NHE1 and NHE5 plays a role in regulating basal autophagy and thereby promotes autophagy-mediated degradation of proteins including polyglutamine aggregates.  相似文献   

13.
Monocarboxylate transporter 4 (MCT4) is a pH-dependent bi-directional lactate transporter. Transport of lactate via MCT4 is increased by extracellular acidification. We investigated the critical histidine residue involved in pH regulation of MCT4 function. Transport of lactate via MCT4 was measured by using a Xenopus laevis oocyte expression system. MCT4-mediated lactate transport was inhibited by Zn2+ in a pH physiological condition but not in an acidic condition. The histidine modifier DEPC (diethyl pyrocarbonate) reduced MCT4 activity but did not completely inactivate MCT4. After treatment with DEPC, pH regulation of MCT4 function was completely knocked out. Inhibitory effects of DEPC were reversed by hydroxylamine and suppressed in the presence of excess lactate and Zn2+. Therefore, we performed an experiment in which the extracellular histidine residue was replaced with alanine. Consequently, the pH regulation of MCT4-H382A function was also knocked out. Our findings demonstrate that the histidine residue His382 in the extracellular loop of the transporter is essential for pH regulation of MCT4-mediated substrate transport activity.  相似文献   

14.
The plasma membrane Na+/H+ exchanger NHE1 has an established function in intracellular pH and cell volume homeostasis by catalyzing electroneutral influx of extracellular Na+ and efflux of intracellular H+. A second function of NHE1 as a structural anchor for actin filaments through its direct binding of the ezrin, radixin, and moesin (ERM) family of actin-binding proteins was recently identified. ERM protein binding and actin anchoring by NHE1 are necessary to retain the localization of NHE1 in specialized plasma membrane domains and to promote cytoskeleton-dependent processes, including actin filament bundling and cell-substrate adhesions. This review explores a third function of NHE1, as a plasma membrane scaffold in the assembly of signaling complexes. Through its coordinate functions in H+ efflux, actin anchoring, and scaffolding, we propose that NHE1 promotes protein interactions and activities, assembles signaling complexes in specialized plasma membrane domains, and coordinates divergent signaling pathways. hydrogen ion efflux; intracellular pH; molecular scaffold  相似文献   

15.
The heart is highly active metabolically but relatively underperfused and, therefore, vulnerable to ischemia. In addition to acidosis, a key component of ischemia is hypoxia that can modulate gene expression and protein function as part of an adaptive or even maladaptive response. Here, using cardiac-derived HL-1 cells, we investigate the effect of various hypoxic stimuli on the expression and activity of Na+/H + exchanger 1 (NHE1), a principal regulator of intracellular pH. Acute (10 min) anoxia produced a reversible decrease in the sarcolemmal NHE1 activity attributable to NHE1 internalization. Treatment with either 1% O 2 or dimethyloxaloylglycine (DMOG; 1 mM) for 48-hr stabilized hypoxia-inducible factor 1 and reduced the sarcolemmal NHE1 activity by internalization, but without a change in total NHE1 immunoreactivity or message levels of the coding gene ( SLC9A1) determined in whole-cell lysates. Unlike the effect of DMOG, which was rapidly reversed on washout, reoxygenation after a prolonged period of hypoxia did not reverse the effects on NHE1, unless media were also supplemented with a membrane-permeant derivative of glutathione (GSH). Without a prior hypoxic episode, GSH supplementation had no effect on the NHE1 activity. Thus, posthypoxic NHE1 reinsertion can only take place if cells have a sufficient reservoir of a reducing agent. We propose that oxidative stress under prolonged hypoxia depletes intracellular GSH to an extent that curtails NHE1 reinsertion once the hypoxic stimulus is withdrawn. This effect may be cardioprotective, as rapid postischaemic restoration of the NHE1 activity is known to trigger reperfusion injury by producing an intracellular Na +-overload, which is proarrhythmogenic.  相似文献   

16.
We tested whether NHE3 and NHE2 Na+/H+ exchanger isoforms were recruited to the plasma membrane (PM) in response to changes in ion homeostasis. NHE2-CFP or NHE3-CFP fusion proteins were functional Na+/H+ exchangers when transiently expressed in NHE-deficient PS120 fibroblasts. Confocal morphometry of cells whose PM was labeled with FM4-64 measured the fractional amount of fusion protein at the cell surface. In resting cells, 10-20% of CFP fluorescence was at PM and stable over time. A protocol commonly used to activate the Na+/H+ exchange function (NH4-prepulse acid load sustained in Na+-free medium), increased PM percentages of PM NHE3-CFP and NHE2-CFP. Separation of cellular acidification from Na+ removal revealed that only NHE3-CFP translocated when medium Na+ was removed, and only NHE2-CFP translocated when the cell was acidified. NHE2/NHE3 chimeric proteins demonstrate that the Na+-removal response element resides predominantly in the NHE3 cytoplasmic tail and is distinct from the acidification response sequence of NHE2.  相似文献   

17.
Until recently, studies to characterize the intestinal epithelial Na+/H+ exchangers had to be done in nonepithelial, mutated fibroblasts. In these cells, detection of any Na+/H+ exchange activity requires prior acid loading. Furthermore, most of these experiments used intracellular pH changes to measure NHE activity. Because changes in pH i only approximate Na+/H+ exchange activity, and may be confounded by alterations in buffering capacity and/or non-NHE contributions to pH regulation, we have used 22[Na] unidirectional apical to cell uptake to measure activities specific to NHE2 or NHE3. Furthermore, we performed these measurements under basal, nonacid-stimulated conditions to avoid bias from this nonphysiological experimental precondition. Both brush border NHEs, when expressed in the well-differentiated, intestinal villuslike Caco-2 subclone, C2bbe (C2), localize to the C2 apical domain and are regulated by second messengers in the same way they are regulated in vivo. Increases in intracellular calcium and cAMP inhibit both isoforms, while phorbol ester affects only NHE3. NHE2 inhibition by cAMP and Ca++ involves changes to both K Na and V max . In contrast, the same two second messengers inhibit NHE3 by a decrease in V max exclusively. Phorbol ester activation of protein kinase C alters both V max and K Na of NHE3, suggesting a multilevel regulatory mechanism. We conclude that NHE2 and NHE3, in epithelial cells, are basally active and are differentially regulated by signal transduction pathways. Received: 28 January 1999/Revised: 18 May 1999  相似文献   

18.
Regulation of intracellular pH is critical for the maintenance of cell homeostasis in response to stress. We used yeast two-hybrid screening to identify novel interacting partners of the pH-regulating transporter NBCe1-B. We identified Hsp70-like stress 70 protein chaperone (STCH) as interacting with NBCe1-B at the N-terminal (amino acids 96–440) region. Co-injection of STCH and NBCe1-B cRNA into Xenopus oocytes significantly increased surface expression of NBCe1-B and enhanced bicarbonate conductance compared with NBCe1-B cRNA alone. STCH siRNA decreased the rate of Na+-dependent pHi recovery from NH4+ pulse-induced acidification in an HSG (human submandibular gland ductal) cell line. We observed that in addition to NBCe1-B, Na+/H+ exchanger (NHE)-dependent pHi recovery was also impaired by STCH siRNA and further confirmed the interaction of STCH with NHE1 but not plasma membrane Ca2+ ATPase. Both NBCe1-B and NHE1 interactions were dependent on a specific 45-amino acid region of STCH. In conclusion, we identify a novel role of STCH in the regulation of pHi through site-specific interactions with NBCe1-B and NHE1 and subsequent modulation of membrane transporter expression. We propose STCH may play a role in pHi regulation at times of cellular stress by enhancing the recovery from intracellular acidification.  相似文献   

19.
Na+/H+ exchange activity in whole cells of the halotolerant alga Dunaliella salina can be elicited by intracellular acidification due to addition of weak acids at appropriate external pH. The changes in both intracellular pH and Na+ were followed. Following a mild intracellular acidification, intracellular Na+ content increased dramatically and then decreased. We interpret the phase of Na+ influx as due to the activation of the plasma membrane Na+/H+ antiporter and the phase of Na+ efflux as due to an active Na+ extrusion process. The following observations are in agreement with this interpretation: (a) the Na+ influx phase was sensitive to Li+, which is an inhibitor of the Na+/H+ antiporter, did not require energy, and was insensitive to vanadate; (b) the Na+ efflux phase is energy-dependent and sensitive to the plasma membrane ATPase inhibitor, vanadate. Following intracellular acidification, a drastic decrease in the intracellular ATP content is observed that is reversed when the cells regain their neutral pH value. We suggest that the intracellular acidification-induced change in the internal Na+ concentration is due to a combination of Na+ uptake via the Na+/H+ antiporter and an active, ATPase-dependent, Na+ extrusion. The Na+/H+ antiporter seems, therefore, to play a principal role in internal pH regulation in Dunaliella.  相似文献   

20.
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitously expressed plasma membrane protein. It regulates intracellular pH by removing a single intracellular H+ in exchange for one extracellular Na+. The membrane domain of NHE1 comprises the 500 N-terminal amino acids and is made of 12 transmembrane segments. The extracellular loops of the transmembrane segments are thought to be involved in cation coordination and inhibitor sensitivity. We have characterized the structure and function of amino acids 278–291 representing extracellular loop 4. When mutated to Cys, residues F277, F280, N282 and E284 of EL4 were sensitive to mutation and reaction with MTSET inhibiting NHE1 activity. In addition they were found to be accessible to extracellular applied MTSET. A peptide of the amino acids of EL4 was mostly unstructured suggesting that it does not provide a rigid structured link between TM VII and TM VIII. Our results suggest that EL4 makes an extension upward from TM VII to make up part of the mouth of the NHE1 protein and is involved in cation selectivity or coordination. EL4 provides a flexible link to TM VIII which may either allow movement of TM VII or allow TM VIII to not be adjacent to TM VII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号