首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveChanges in insulin sensitivity (IS) and insulin secretion occur with perturbations in energy balance and glycemic load (GL) of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear.MethodsIn a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2) followed 1wk of overfeeding (OF), 3wks of caloric restriction (CR) containing either 50% or 65% carbohydrate (CHO) and 2wks of refeeding (RF) with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI), insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose) and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion) were assessed.ResultsIS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05). Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05) whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05) and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only). After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant.ConclusionWeight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and ghrelin seem to be the major endocrine determinants of IS, leptin/adiponectin-ratio and fT4 levels may impact changes in insulin secretion with weight cycling.

Trial Registration

ClinicalTrials.gov NCT01737034  相似文献   

2.
Objective: To investigate in prepubertal children whether physical fitness and/or physical activity are: 1) associated with insulin secretion and sensitivity and 2) account for racial differences in insulin secretion and sensitivity. Research Methods and Procedures: Subjects included 34 African American and 34 white nondiabetic children aged 5 to 11 years. Data were divided into two sets according to the availability of VO2max and physical activity data. Body composition was measured by dual‐energy X‐ray absorptiometry. Subcutaneous abdominal adipose tissue and intra‐abdominal adipose tissue were examined by computed tomography. Insulin sensitivity (SI) and acute insulin response (AIR) were determined by a frequently sampled intravenous glucose tolerance test. An all‐out, progressive treadmill exercise test was used for measuring VO2max. Physical activity data were collected by questionnaire. Results: African American children had lower SI and higher AIR than white children, after adjusting for total body fat mass. African Americans reported higher levels of physical activity (hours/wk) than whites, but had a lower VO2max. In multiple linear regression analysis, hours/wk of activity and hours/wk of vigorous activity, but not moderate activity, were independently related to SI and AIR after adjusting for race, total body fat mass or fat distribution, and total lean tissue mass. VO2max was not related to AIR, and was inversely related to SI, after adjusting for body composition. Race remained significantly associated with both SI and AIR, even after adjusting for body composition, fat distribution, and hours/wk of activity or hours/wk of vigorous activity. Discussion: In summary, overall physical activity and, especially, vigorous activity were associated with insulin secretion and sensitivity. However, neither physical activity nor VO2max explained the racial difference in insulin secretion (higher in African Americans) and sensitivity (lower in African Americans). Thus, racial (African American to white) differences in aspects of insulin action seem to be due to factors other than body composition, fat distribution, cardiovascular fitness, and amount of physical activity.  相似文献   

3.
The biochemical mechanisms underlying glucose-stimulated insulin secretion from pancreatic β-cells are not completely understood. To identify metabolic disturbances in β-cells that impair glucose-stimulated insulin secretion, we compared two INS-1-derived clonal β-cell lines, which are glucose-responsive (832/13 cells) or glucose-unresponsive (832/2 cells). To this end, we analyzed a number of parameters in glycolytic and mitochondrial metabolism, including mRNA expression of genes involved in cellular energy metabolism. We found that despite a marked impairment of glucose-stimulated insulin secretion, 832/2 cells exhibited a higher rate of glycolysis. Still, no glucose-induced increases in respiratory rate, ATP production, or respiratory chain complex I, III, and IV activities were seen in the 832/2 cells. Instead, 832/2 cells, which expressed lactate dehydrogenase A, released lactate regardless of ambient glucose concentrations. In contrast, the glucose-responsive 832/13 line lacked lactate dehydrogenase and did not produce lactate. Accordingly, in 832/2 cells mRNA expression of genes for glycolytic enzymes were up-regulated, whereas mitochondria-related genes were down-regulated. This could account for a Warburg-like effect in the 832/2 cell clone, lacking in 832/13 cells as well as primary β-cells. In human islets, mRNA expression of genes such as lactate dehydrogenase A and hexokinase I correlated positively with HbA1c levels, reflecting perturbed long term glucose homeostasis, whereas that of Slc2a2 (glucose transporter 2) correlated negatively with HbA1c and thus better metabolic control. We conclude that tight metabolic regulation enhancing mitochondrial metabolism and restricting glycolysis in 832/13 cells is required for clonal β-cells to secrete insulin robustly in response to glucose. Moreover, a similar expression pattern of genes controlling glycolytic and mitochondrial metabolism in clonal β-cells and human islets was observed, suggesting that a similar prioritization of mitochondrial metabolism is required in healthy human β-cells. The 832 β-cell lines may be helpful tools to resolve metabolic perturbations occurring in Type 2 diabetes.  相似文献   

4.
This paper has tested the hypothesis that patients with hypothalamic obesity have altered mechanisms controlling insulin secretion when compared to obese patients without hypothalamic injury. Fasting glucose and insulin values were significantly higher in the morning than in the afternoon in the six control obese patients, but there was no diurnal difference in the six patients with hypothalamic obesity (n=6). The control obese subjects showed a diurnal variation in glucose-stimulated insulin secretion, whereas the patients with hypothalamic obesity did not, suggesting that hypothalamic injury had destroyed diurnal rhythms. Naloxone, an opioid antagonist, acutely suppressed fasting insulin in the six patients with essential obesity but had little effect on fasting insulin in the three patients with hypothalamic obesity or in five normal-weight controls. Naloxone increased insulin sensitivity in the obese control patients, but did not affect either insulin secretion or insulin sensitivity in patients with hypothalamic obesity or in normal weight subjects. Our results support the conclusion that hypothalamic obesity disrupts diurnal rhythms, with the suggestion that opioid peptides affect insulin secretion differently in patients with essential obesity as compared to normal weight subjects or those with hypothalamic obesity.  相似文献   

5.
The impact of sex and age on glucose metabolism in the development of overweight/obesity is a matter of debate. We hypothesized that insulin sensitivity (IS) and β-cell function (BF) in a normal white population will differ between males and females and aimed to evaluate the possible effects of BMI and age on metabolic parameters of both sexes. This study is a cross-sectional analysis of the general community. IS was measured with quantitative insulin sensitivity check index (QUICKI) and oral glucose insulin sensitivity (OGIS) and BF with the insulinogenic index during 75-g 2-h oral glucose-tolerance tests (OGTTs). We studied 611 females and 361 males with normal glycemia according to both fasting and 2-h glucose (85 ± 0.3 mg/dl (means ± SE) in females and 89 ± 0.4 in males (P < 0.0001), and 93 ± 1 in females and 89 ± 1 in males (P = 0.005), respectively). Females were younger (37 ± 1 years) than males (40 ± 1, P < 0.0001), but no difference was found in mean BMI (BMI = 25.8 ± 0.2 kg/m(2) in both). Student's two-sample t-test was used for simple comparison between and within genders, multiple linear regressions to account for covariates. During the OGTT, females had lower glucose (area under the curve (AUC) 133 ± 1 mg/ml·2 h vs. 148 ± 2; P < 0.00001), while insulinemia was comparable (AUC 5.3 ± 0.1 mU/ml·2 h vs. 5.7 ± 0.2, P = 0.15). IS remained higher in females (473 ± 3 ml/min/m(2) vs. 454 ± 3, P < 0.0001) also after having accounted for age and BMI (P = 0.015). No difference was observed in fasting insulin or BF. However, BF increased by 46% with BMI and when accounting for age and BMI, BF of females was significantly higher (P < 0.0001). Because IS and BF are higher in females than in males, sex should be considered in metabolic studies and overweight/obese populations.  相似文献   

6.

Aims/Hypothesis

We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes.

Methods

We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines.

Results

SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01).

Conclusions

Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue.  相似文献   

7.
The steroid receptor antagonist mifepristone is used as an anti-cancer agent, eliciting both cytostatic and cytotoxic effects on malignant cells. However, the metabolic effects of long-term treatment with mifepristone have remained unclear. The effects of mifepristone on insulin sensitivity and adiponectin secretion were evaluated both in in vivo and in vitro. First, we explored the effects of mifepristone, on metabolic functions in obese mice receiving a high-fat diet. When these mice were fed mifepristone, they exhibited a marked improvement in insulin sensitivity, attenuated hepatic injury, and decreased adipocyte size, compared with mice that received only the high-fat diet. Intriguingly, mifepristone-treated mice showed significantly elevated plasma adiponectin levels. Second, we tested the effects of mifepristone on differentiated 3T3-L1 adipocytes in vitro. When differentiated adipocytes were treated with mifepristone for 48 h, adiponectin was upregulated at both mRNA and protein levels. Collectively, these results reveal novel actions of mifepristone on metabolic functions, in vivo and in vitro, in which the drug exerts antidiabetic effects associated with an upregulation in adiponectin-secretion.  相似文献   

8.
H. Khan  J. R. Bingham 《CMAJ》1969,101(9):74-77
Four different groups of subjects were given Histalog, insulin or reserpine or acted as controls. Changes were noted in gastric emptying, acid, chloride, parietal and non-parietal secretions and neutral chloride. Gastric emptying and secretion were measured by the Hunt and Spurrell test meal as modified by us for drug testing.Histalog stimulated gastric secretion but not emptying. Insulin stimulated both secretion and emptying. Reserpine stimulated secretion but it stimulated emptying only in one-half of the subjects.After Histalog and reserpine the rise in hydrogen and chloride secretion was equal, so the neutral chloride did not increase. After insulin the rise of chloride was proportionately greater than the rise of hydrogen, so that neutral chloride was increased.  相似文献   

9.
10.
A C-peptide-based assessment of β-cell function was performed here in the Zucker fatty rat, a suitable animal model of human metabolic syndrome. To this aim, a 90-min intravenous glucose tolerance test (IVGTT) was performed in seven Zucker fatty rats (ZFR), 7-to-9week-old, and seven age-matched Zucker lean rats (ZLR). The minimal model of C-peptide (CPMM), originally introduced for humans, was adapted to Zucker rats and then applied to interpret IVGTT data. For a comprehensive evaluation of glucose tolerance in ZFR, CPMM was applied in combination with the minimal model of glucose kinetics (GKMM). Our results showed that the present CPMM-based interpretation of data is able to: 1) provide a suitable fit of C-Peptide data; 2) achieve a satisfactory estimation of parameters of interest 3) quantify both insulin secretion by estimating the time course of pre-hepatic secretion rate, SR(t), and total insulin secretion, TIS, and pancreatic sensitivity by means of three specific indexes of β-cell responsiveness to glucose stimulus (first-phase, Ф1, second-phase, Ф2, and steady-state, Фss, never assessed in Zucker rats before; 4) detect the significant enhancement of insulin secretion in the ZFR, in face of a severe insulin-resistant state, previously observed only using a purely experimental approach. Thus, the methodology presented here represents a reliable tool to assess β-cell function in the Zucker rat, and opens new possibilities for the quantification of further processes involved in glucose homeostasis such as the hepatic insulin degradation.  相似文献   

11.
A system for the isolation of anaerobes based upon the use of reducible solid media is described. Plates of reducible media prepared and stored aerobically were reduced before use by incubation in a GasPak jar for 24 h. Clinical specimens for culture were carefully selected. The value of Amies transport medium was confirmed. Selective and nonselective formulations of reducible media were used for primary isolation. Abbreviated identification schemes based in part on gas-liquid chromatography are presented. The suitability of this system for improving the recovery and identification of anaerobes in a routine clinical laboratory is documented.  相似文献   

12.
The ice-nucleating bacterium, Pantoea agglomerans IFO12686, induces the cryoptotective protein (CRP) by cold acclimation at 12°C. The CRP was purified to apparent homogeneity by various chromatographies. We found that the purified CRP was a monomer of approximately 29,000 according to gel filtration chromatography and SDS-PAGE, and was a heat-stable protein. The CRP could protect freeze-labile enzymes, lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) and isocitrate dehydrogenase (iCDH), against freezing-thawing denaturation. The activity of the CRP was about 3.5×104 times more effective than bovine serum albumin (BSA) and 2×106 times than COR26 from the ice-nucleating bacterium Pseudomonas fluorescens KUIN-1. We confirmed that the CRP was a novel protein, as judged by the a different molecule mass from the already-known cryoprotectants, and has an extremely high cryoprotective activity.  相似文献   

13.
Although the most common mechanism underlying congenital hyperinsulinism is dysfunction of the pancreatic ATP-sensitive potassium channel, the pathogenesis and genetic origins of this disease remains largely unexplained in more than half of all patients. UCP2 knockout mice exhibit an hyperinsulinemic hypoglycemia, suggesting an involment of UCP2 in insulin secretion. However, a possible pathogenic role for UCP2 protein in the development of human congenital hyperinsulinism or of any human disease has not yet been investigated. We studied ten children exhibiting congenital hyperinsulinism, without detectable mutations in the known congenital hyperinsulinism-causing genes. Parental-inherited heterozygous UCP2 variants encoding amino-acid changes were found in two unrelated children with congenital hyperinsulinism. Functional assays in yeast and in insulin-secreting cells revealed an impaired activity of UCP2 mutants. Therefore, we report the finding of UCP2 coding variants in human congenital hyperinsulinism, which reveals a role for this gene in the regulation of insulin secretion and glucose metabolism in humans. Our results show for the first time a direct association between UCP2 amino acid alteration and human disease and highlight a role for mitochondria in hormone secretion.  相似文献   

14.

Background

Diabetes mellitus has become a worldwide health problem. Whether fruit juice is beneficial in glycemic control is still inconclusive. This study aimed to synthesize evidence from randomized controlled trials on fruit juice in relationship to glucose control and insulin sensitivity.

Methods

A strategic literature search of PubMed, EMBASE, and the Cochrane Library (updated to March, 2014) was performed to retrieve the randomized controlled trials that evaluated the effects of fruit juice on glucose control and insulin sensitivity. Study quality was assessed using the Jadad scale. Weighted mean differences were calculated for net changes in the levels of fasting glucose, fasting insulin, hemoglobin A1c (HbA1c), and homeostatic model assessment of insulin resistance (HOMA-IR) using fixed- or random-effects model. Prespecified subgroup and sensitivity analyses were performed to explore the potential heterogeneity.

Results

Twelve trials comprising a total of 412 subjects were included in the current meta-analysis. The numbers of these studies that reported the data on fasting glucose, fasting insulin, HbA1c and HOMA-IR were 12, 5, 3 and 3, respectively. Fruit juice consumption did not show a significant effect on fasting glucose and insulin concentrations. The net change was 0.79 mg/dL (95% CI: −1.44, 3.02 mg/dL; P = 0.49) for fasting glucose concentrations and −0.74 µIU/ml (95% CI: −2.62, 1.14 µIU/ml; P = 0.44) for fasting insulin concentrations in the fixed-effects model. Subgroup analyses further suggested that the effect of fruit juice on fasting glucose concentrations was not influenced by population region, baseline glucose concentration, duration, type of fruit juice, glycemic index of fruit juice, fruit juice nutrient constitution, total polyphenols dose and Jadad score.

Conclusion

This meta-analysis showed that fruit juice may have no overall effect on fasting glucose and insulin concentrations. More RCTs are warranted to further clarify the association between fruit juice and glycemic control.  相似文献   

15.

Background

Diet-induced obesity is a rising health concern which can lead to the development of glucose intolerance and muscle insulin resistance and, ultimately, type II diabetes mellitus. This research investigates the associations between glucose intolerance or muscle insulin resistance and tissue specific changes during the progression of diet-induced obesity.

Methodology

C57BL/6J mice were fed a normal or high-fat diet (HFD; 60% kcal fat) for 3 or 8 weeks. Disease progression was monitored by measurements of body/tissue mass changes, glucose and insulin tolerance tests, and ex vivo glucose uptake in intact muscles. Lipid metabolism was analyzed using metabolic chambers and ex vivo palmitate assays in intact muscles. Skeletal muscle, liver and adipose tissues were analyzed for changes in inflammatory gene expression. Plasma was analyzed for insulin levels and inflammatory proteins. Histological techniques were used on muscle and liver cryosections to assess metabolic and morphological changes.

Principal Findings/Conclusions

A rapid shift in whole body metabolism towards lipids was observed with HFD. Following 3 weeks of HFD, elevated total lipid oxidation and an oxidative fiber type shift had occurred in the skeletal muscle, which we propose was responsible for delaying intramyocellular lipid accumulation and maintaining muscle’s insulin sensitivity. Glucose intolerance was present after three weeks of HFD and was associated with an enlarged adipose tissue depot, adipose tissue inflammation and excess hepatic lipids, but not hepatic inflammation. Furthermore, HFD did not significantly increase systemic or muscle inflammation after 3 or 8 weeks of HFD suggesting that early diet-induced obesity does not cause inflammation throughout the whole body. Overall these findings indicate skeletal muscle did not contribute to the development of HFD-induced impairments in whole-body glucose tolerance following 3 weeks of HFD.  相似文献   

16.
Insulin stimulates the mobilization of glucose transporter 4 (GLUT4) storage vesicles to the plasma membrane, resulting in an influx of glucose into target tissues such as muscle and fat. We present evidence that CLIP-associating protein 2 (CLASP2), a protein previously unassociated with insulin action, is responsive to insulin stimulation. Using mass spectrometry-based protein identification combined with phosphoantibody immunoprecipitation in L6 myotubes, we detected a 4.8-fold increase of CLASP2 in the anti-phosphoserine immunoprecipitates upon insulin stimulation. Western blotting of CLASP2 immunoprecipitates with the phosphoantibody confirmed the finding that CLASP2 undergoes insulin-stimulated phosphorylation, and a number of novel phosphorylation sites were identified. Confocal imaging of L6 myotubes revealed that CLASP2 colocalizes with GLUT4 at the plasma membrane within areas of insulin-mediated cortical actin remodeling. CLASP2 is responsible for directing the distal end of microtubules to the cell cortex, and it has been shown that GLUT4 travels along microtubule tracks. In support of the concept that CLASP2 plays a role in the trafficking of GLUT4 at the cell periphery, CLASP2 knockdown by siRNA in L6 myotubes interfered with insulin-stimulated GLUT4 localization to the plasma membrane. Furthermore, siRNA mediated knockdown of CLASP2 in 3T3-L1 adipocytes inhibited insulin-stimulated glucose transport. We therefore propose a new model for CLASP2 in insulin action, where CLASP2 directs the delivery of GLUT4 to cell cortex landing zones important for insulin action.  相似文献   

17.
目的探讨干预脂毒性改善糖尿病大鼠胰岛分泌功能及氧化应激损害的机制。方法将大鼠分为4组①正常组(NC),全程普通饲料喂养;②高脂组(HF),全程高脂饲料喂养。糖尿病组,高脂饲料喂养8周后腹腔注射低剂量STZ(30mg/kg),48h后行OGTT试验判断成模情况后分组。③糖尿病对照组(DM),不给予药物干预;④血脂干预组(SIM),灌胃辛伐他汀5mg/(kg.d)4周干预脂毒性。通过免疫组化染色观察胰岛B、A细胞形态学特点,RT-PCR测定胰腺内胰岛素原mRNA表达水平,DHE荧光染色检测胰岛中活性氧化产物ROS水平。结果与糖尿病对照组相比,干预脂毒性4周后血清胆固醇(TC)和甘油三酯(TG)水平分别下降了22.9%(P〈0.01)和57.0%(P〈0.05)。OGTT血糖水平均显著下降(P〈0.01)。胰岛中B细胞相对量是对照组的2.6倍(P〈0.01),B细胞胞质内胰岛素水平增加了26.5%(P〈0.05),胰岛素原mRNA表达升高18.3%(P〈0.01);A细胞相对量减少了50%(P〈0.01)。血清丙二醛(MDA)水平和胰腺中ROS表达显著下降。结论辛伐他汀干预脂毒性4周可以显著改善糖尿病大鼠胰岛分泌功能和氧化应激损害。  相似文献   

18.
Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria.  相似文献   

19.
20.
Core fucosylation (CF) patterns of some glycoproteins are more sensitive and specific than evaluation of their total respective protein levels for diagnosis of many diseases, such as cancers. Global profiling and quantitative characterization of CF glycoproteins may reveal potent biomarkers for clinical applications. However, current techniques are unable to reveal CF glycoproteins precisely on a large scale. Here we developed a robust strategy that integrates molecular weight cutoff, neutral loss-dependent MS3, database-independent candidate spectrum filtering, and optimization to effectively identify CF glycoproteins. The rationale for spectrum treatment was innovatively based on computation of the mass distribution in spectra of CF glycopeptides. The efficacy of this strategy was demonstrated by implementation for plasma from healthy subjects and subjects with hepatocellular carcinoma. Over 100 CF glycoproteins and CF sites were identified, and over 10,000 mass spectra of CF glycopeptide were found. The scale of identification results indicates great progress for finding biomarkers with a particular and attractive prospect, and the candidate spectra will be a useful resource for the improvement of database searching methods for glycopeptides.Glycoproteins are implicated in a wide range of biological processes such as fertilization, development, the immune response, cell signaling, and apoptosis. Altered glycosylation patterns can affect the conformations of glycoproteins and their functions and interactions with other molecules (1,2). Abnormal glycosylation has been demonstrated in many pathological processes. Targeted glycosylation research is considered increasingly important as a way to find novel therapeutic approaches (2,3), and core fucosylation (CF)1 glycoproteomics has attracted particularly great attention (4,5). Previous reports show that CF glycoproteins are involved in many important physiological processes, such as transforming growth factor-β1 (6) and epidermal growth factor signaling pathways (7). They also play key roles in many pathological processes, such as hepatocellular carcinoma (HCC) (8,9), pancreatic cancer (10,11), lung cancer (6,12), ovarian cancer (13), and prostate cancer (14). Moreover the CF patterns of several glycoproteins have been reported to serve as more sensitive and specific biomarkers than their total respective protein levels (8,9, 15,16). The combination of a biomarker panel of CF glycoproteins is expected to serve as a more reliable diagnostic standard (13).Glycoproteomics research has been conducted for several years and has led to the generation of many effective evaluation methods. Most of these methods use lectin or the chemical reagent hydrazide to enrich glycopeptides. The oligosaccharide chains are then completely released by treatment of the glycopeptides with peptide-N-glycosidase F. Finally the deglycosylated peptides and the deglycosylation sites are identified by tandem mass spectrometric analysis (17,18). Although impressive results have been attained, this commonly used strategy is not an ideal choice for CF glycoproteins research. First, the enrichment specificity of lectin is not satisfactory (19) as hydrazide chemical reactions irreversibly destroy glycan structures, particularly fucose tags. Second, the deglycosylation site is determined by the 0.9840-Da mass shift caused by the asparagine to aspartic acid transfer; its confidence can be compromised by deamination of the Asn. Besides that, the CF site can no longer be distinguished from other glycosylation sites in the same glycoprotein. Thus, the ideal way to precisely identify CF glycoproteins on a large scale is to provide direct evidence for the existence of CF modification. Traditional approaches, such as lectin blots, are not sufficiently powerful to meet this requirement. Instead recent advancements in high end MS-based techniques have ignited the hope to reach this challenging goal (20,21).Our group has developed an innovative and systematic strategy for the precise and large scale identification of CF glycoproteins. Several steps were taken leading up to the development of our strategy. 1) We established a novel enrichment step for CF glycopeptides, combining the use of lectin for CF glycoprotein enrichment with ultrafiltration for further enrichment of glycopeptide. Glycopeptide enrichment by ultrafiltration based on molecular weight cutoff technology has the added merit of integrating enrichment, desalting, and concentration into a one-step operation. 2) We established a neutral loss-dependent MS3 scan method that specifically captures partially deglycosylated CF glycopeptides (with fucosyl-N-acetylglucosamines residue retained). In MS3, the intensity distribution of the fragment peaks is much more homogeneous, and there are fewer theoretical fragment ions and interfering peaks than in MS2. 3) We established a novel database-independent candidate spectrum-filtering method for selecting partially deglycosylated CF glycopeptides and a spectrum optimization method. By introducing several strict and appropriate criteria into a scoring system, high quality candidate spectra can be selected before searching the database, which not only increases the database search efficiency but also improves the identification credibility. Furthermore by statistically analyzing candidate spectra, some important glycan-related fragmentation patterns were revealed. Based on these observations, many kinds of interfering peaks due to glycan fragmentation that are always very intensive and would decrease the accuracy of peptide scoring can be localized and removed from the spectra. This treatment can effectively increase the number of identifications through database searching or de novo analysis.The efficacy of this strategy was testified by implementing it on both healthy and HCC plasma. Respectively, 105 and 106 CF sites were identified from 72 and 79 glycoproteins, including 19 annotated potential glycosylation sites and 25 novel ones. This study holds promise for the large scale determination of core fucosylated biomarker panels from clinical samples, either body fluids or tissue biopsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号