首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cross‐site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere–ocean general circulation models (AOGCMs; CCSM4, HadGEM2‐CC, MIROC5, and MRI‐CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET‐BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce‐fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change.  相似文献   

2.
Shifts in biodiversity and ecological processes in stream ecosystems in response to rapid climate change will depend on how numerically and functionally dominant aquatic insect species respond to changes in stream temperature and hydrology. Across 253 minimally perturbed streams in eight ecoregions in the western USA, we modeled the distribution of 88 individual insect taxa in relation to existing combinations of maximum summer temperature, mean annual streamflow, and their interaction. We used a heat map approach along with downscaled general circulation model (GCM) projections of warming and streamflow change to estimate site‐specific extirpation likelihood for each taxon, allowing estimation of whole‐community change in streams across these ecoregions. Conservative climate change projections indicate a 30–40% loss of taxa in warmer, drier ecoregions and 10–20% loss in cooler, wetter ecoregions where taxa are relatively buffered from projected warming and hydrologic change. Differential vulnerability of taxa with key functional foraging roles in processing basal resources suggests that climate change has the potential to modify stream trophic structure and function (e.g., alter rates of detrital decomposition and algal consumption), particularly in warmer and drier ecoregions. We show that streamflow change is equally as important as warming in projected risk to stream community composition and that the relative threat posed by these two fundamental drivers varies across ecoregions according to projected gradients of temperature and hydrologic change. Results also suggest that direct human modification of streams through actions such as water abstraction is likely to further exacerbate loss of taxa and ecosystem alteration, especially in drying climates. Management actions to mitigate climate change impacts on stream ecosystems or to proactively adapt to them will require regional calibration, due to geographic variation in insect sensitivity and in exposure to projected thermal warming and hydrologic change.  相似文献   

3.
Boreal forests are facing profound changes in their growth environment, including warming‐induced water deficits, extended growing seasons, accelerated snowmelt, and permafrost thaw. The influence of warming on trees varies regionally, but in most boreal forests studied to date, tree growth has been found to be negatively affected by increasing temperatures. Here, we used a network of Pinus sylvestris tree‐ring collections spanning a wide climate gradient the southern end of the boreal forest in Asia to assess their response to climate change for the period 1958–2014. Contrary to findings in other boreal regions, we found that previously negative effects of temperature on tree growth turned positive in the northern portion of the study network after the onset of rapid warming. Trees in the drier portion did not show this reversal in their climatic response during the period of rapid warming. Abundant water availability during the growing season, particularly in the early to mid‐growing season (May–July), is key to the reversal of tree sensitivity to climate. Advancement in the onset of growth appears to allow trees to take advantage of snowmelt water, such that tree growth increases with increasing temperatures during the rapidly warming period. The region's monsoonal climate delivers limited precipitation during the early growing season, and thus snowmelt likely covers the water deficit so trees are less stressed from the onset of earlier growth. Our results indicate that the growth response of P. sylvestris to increasing temperatures strongly related to increased early season water availability. Hence, boreal forests with sufficient water available during crucial parts of the growing season might be more able to withstand or even increase growth during periods of rising temperatures. We suspect that other regions of the boreal forest may be affected by similar dynamics.  相似文献   

4.
1. We integrated a 20‐year ecological data set from a sparsely inhabited, snowmelt‐dominated catchment with hydrologic models to predict the effects of hydrologic shifts on stream biofilm. 2. We used a stepwise multiple regression to assess the relationship between hydrology and biofilm ash‐free dry mass (AFDM) and chlorophyll‐a (chl‐a) under recent climate conditions. Biofilm AFDM was significantly related to the timing of peak streamflow, and chl‐a was significantly related to the timing of median streamflow. We applied these results to output from the variable infiltration capacity hydrologic model, which predicted hydrology under a baseline scenario (+0 °C) and a range of warming scenarios expected with climate change (+1, +2 or +3 °C). 3. When compared to the baseline, the results indicated that earlier peakflows predicted under warming scenarios may lead to earlier initiation of biofilm growth. This may increase biofilm AFDM during the summer by up to 103% (±29) in the +3 °C scenario. Moreover, interannual variability of AFDM was predicted to increase up to 300%. Average chl‐a during the summer increased by up to 90% (±15) in the +3 °C scenario; however, its response was not significantly different from baseline in most years. 4. Because hydrologic change may alter the temporal dynamics of biofilm growth, it may affect the seasonal dynamics of biofilm quality (i.e. chl‐a‐to‐AFDM ratio). The results indicated that hydrologic shifts may increase biofilm quality during the spring, but may decrease it during the summer. Thus, we provide evidence that predicted hydrologic shifts in snowmelt‐dominated streams may alter the quantity and quality of an important basal resource. However, the magnitudes of these predictions are likely to be affected by other environmental changes that are occurring with climate change (e.g. increased wildfire activity and stream warming).  相似文献   

5.
SWAT模型融雪模块的改进   总被引:2,自引:0,他引:2  
余文君  南卓铜  赵彦博  李硕 《生态学报》2013,33(21):6992-7001
SWAT模型是一个具有物理基础的分布式水文模型,利用SCS径流曲线数方法计算地表径流,而采用相对简单的度日因子方法计算融雪径流。因此在湿润半湿润、雨量丰富的平原地区应用SWAT模型进行径流模拟时可以得到较好的模拟结果,但是在干旱半干旱、降水稀少,且春汛期间融雪径流是重要补给来源的高寒山区,模拟的融雪径流明显偏小,不能很好的反映这些地区的融雪过程,导致河道径流模拟精度偏低。FASST模型是具有物理机制的陆面过程模型,其采用能量平衡的方法计算融雪径流,能够较好的模拟复杂地形山区流域的融雪径流。本文以黑河山区流域为研究区,将FASST模型集成到SWAT模型,改善SWAT模型融雪径流的计算方法。通过对比SWAT模型集成前后莺落峡出山口的河道月径流、融雪径流和地表径流对河道的贡献等几个方面,表明了集成FASST融雪模块的SWAT模型能更好的反映黑河山区流域的融雪径流过程,从而提高河道径流的整体模拟精度。  相似文献   

6.
In regions with airborne contaminants and large snowpacks, there is concern over the impact that snowmelt chemical pulses — periods of sharp increase in meltwater solute concentration — could have on aquatic resources during spring runoff. A major variable in determining such an effect is the flow path of snowmelt solutes to the stream or lake. From December 1988, to late April 1989, the quality and quantity of precipitation, snowmelt, soil solution and streamwater were measured in a 176-ha gauged watershed on the south shore of Lake Superior. The main objectives were to (1) examine the change in flow path meltwaters take to the stream during distinct winter and spring hydrologic periods, (2) quantify ecosystem-level ion budgets prior to, during, and following snowmelt, and (3) examine if streamwater chemistry might be a sensitive indicator of change in ecosystem flow paths. Prior to peak snowmelt, groundwater made up 80% of stream discharge. During peak snowmelt, the groundwater level rose to the soil surface resulting in lateral water movement through near-surface macropores and as overland flow. Near the end of snowmelt, melt-waters exerted a piston action on deeper soil solution again increasing its relative contribution to streamwater discharge. Net groundwater drawdown during the study resulted in streamwater discharge about equal to precipitation inputs. Unfrozen soils and brief mid-winter thaws resulted in steady snowmelt throughout early and mid-winter. The snowpack lost > 50% of most ions prior to the period of major snowmelt and high stream discharge in late March and early April. Snowmelt and streamwater NO3 and NH4 pulses occurred before the period of overland flow and peak streamwater discharge (April 4–24). During overland flow, stream discharge of total N, P, DOC, and AI peaked. Nutrient budgets computed for distinct hydrologic periods were much more helpful in explaining ecosystem pathways and processes than were changes in solute concentration. For the study period, watershed base cation (CB) discharge was 23 times input and SO4 2– discharge exceeded input by 42%. H+ was the most strongly conserved ion with output < 0.2% of input. Also conserved were NH4 + with only 1.4% of input leaving the ecosystem and NO3 with output equal to 9.4% of input.  相似文献   

7.
Climate change can affect biotic interactions, and the impacts of climate on biotic interactions may vary across climate gradients. Climate affects biotic interactions through multiple drivers, although few studies have investigated multiple climate drivers in experiments. We examined the effects of experimental watering, warming, and predator access on leaf water content and herbivory rates of woolly bear caterpillars (Arctia virginalis) on a native perennial plant, pacific silverweed (Argentina anserina ssp. pacifica), at two sites across a gradient of precipitation in coastal California. Based on theory, we predicted that watering should increase herbivory at the drier end of the gradient, predation should decrease herbivory, and watering and warming should have positive interacting effects on herbivory. Consistent with our predictions, we found that watering only increased herbivory under drier conditions. However, watering increased leaf water content at both wetter and drier sites. Warming increased herbivory irrespective of local climate and did not interact with watering. Predation did not affect herbivory rates. Given predictions that the study locales will become warmer and drier with climate change, our results suggest that the effects of future warming and drying on herbivory may counteract each other in drier regions of the range of Argentina anserina. Our findings suggest a useful role for range‐limit theory and the stress‐gradient hypothesis in predicting climate change effects on herbivory across stress gradients. Specifically, if climate change decreases stress, herbivory may increase, and vice versa for increasing stress. In addition, our work supports previous suggestions that multiple climate drivers are likely to have dampening effects on biotic interactions due to effects in different directions, though this is context‐dependent.  相似文献   

8.
Hydrological restoration of the Southern Everglades will result in increased freshwater flow to the freshwater and estuarine wetlands bordering Florida Bay. We evaluated the contribution of surface freshwater runoff versus atmospheric deposition and ground water on the water and nutrient budgets of these wetlands. These estimates were used to assess the importance of hydrologic inputs and losses relative to sediment burial, denitrification, and nitrogen fixation. We calculated seasonal inputs and outputs of water, total phosphorus (TP) and total nitrogen (TN) from surface water, precipitation, and evapotranspiration in the Taylor Slough/C-111 basin wetlands for 1.5 years. Atmospheric deposition was the dominant source of water and TP for these oligotrophic, phosphorus-limited wetlands. Surface water was the major TN source of during the wet season, but on an annual basis was equal to the atmospheric TN deposition. We calculated a net annual import of 31.4 mg m–2 yr–1 P and 694 mg m–2 yr–1N into the wetland from hydrologic sources. Hydrologic import of P was within range of estimates of sediment P burial (33–70 mg m–2 yr–1 P), while sediment burial of N (1890–4027 mg m–2 yr–1 N) greatly exceeded estimated hydrologic N import. High nitrogen fixation rates or an underestimation of groundwater N flux may explain the discrepancy between estimates of hydrologic N import and sediment N burial rates.  相似文献   

9.
ABSTRACT

Background: The páramo provides key ecosystem services, including regulation and provision of water. To understand the underlying functions, an ecosystem approach is necessary.

Aims: We quantified the combined effect of vegetation and soils (integrated topographic and vegetation units – TVU) on the hydrological balance of a Venezuelan páramo micro-watershed and analyse its hydrological response to intra- and interannual rainfall variability.

Methods: Data (2008–2016) from meteorological stations of TVUs and of a streamflow station was used to calculate watershed level hydrologic balances. We quantified the impact of the TVUs outputs by calculating evapotranspiration under non-standard conditions (ETc adj).

Result: Evapotranspiration of wetlands and tarns was high, exceeding annual precipitation. Shrubland had low evapotranspiration. Recharge of páramo reservoirs (soils, wetlands, tarns) occurred when monthly rainfall exceeded 90 mm. In dry years there were lower water yields with less effective hydrological regulation. In average years the differences between input and output in watershed balances were very small.

Conclusions: The high and constant evapotranspiration of the wetlands and tarns (due to permanent water availability) suggests they could maintain streamflow during dry periods. Their high evapotranspiration rates are compensated by low rates in shrublands units, reducing the mean total evapotranspiration of the watershed. The watershed balances suggest a limited regulatory capacity in these relatively dry páramos with no volcanic soils.  相似文献   

10.
未来气候变化对黄土高原黑河流域水资源的影响   总被引:8,自引:1,他引:7  
李志  刘文兆  张勋昌  郑粉莉 《生态学报》2009,29(7):3456-3464
气候变化对黄土高原的水资源有重要影响,对其影响进行评估可以为区域发展提供重要的决策依据.基于分布式水文模型SWAT和4种全球环流模式的各3种排放情景,评估了2010~2039年黄土高塬沟壑区黑河流域水资源对气候变化的潜在响应.结果表明,黑河流域2010~2039年的年均降水变化-2.3%~7.8%,年均最高和最低温度分别升高0.7~2.2 ℃和1.2~2.8 ℃,年均径流量变化-19.8%~37.0%,1.2 m剖面年均土壤水分含量变化-5.5%~17.2%,年均蒸散量普遍增长0.1%~5.9%;水文气象变量变化趋势复杂,但T检验表明年降水、径流、土壤水分和蒸散增长的概率较大.对于季节变化,降水可能在12~7月份和9月份增长,8月份和10~11月份减少;径流在4~7月份和9~10月份增加,11~3月份和8月份减少;土壤水分在各月都增长;蒸散11~6月份普遍增长,7~10月份减少的可能性较大.未来气候将发生显著变化并对水资源有重要影响,需采取必要的措施来减缓其不利影响.  相似文献   

11.
Patterns and rates of wetland methane emissions and their sensitivity to potential climate change are critical components of the global methane cycle. In this study, we use empirical simulation models to investigate these processes in floodplain swamps of the Ogeechee River in Georgia, U.S.A. We developed statistical models that relate methane emissions to monthly climate and river flow based on field observations of methane emissions from this system made during 1987–1989. Models were then applied to observed climate and hydrograph for 1937–1989 and to simulated altered climates. Altered climates were generated from the present-day climate by changing monthly temperatures by a constant amount and/or changing monthly precipitation by a constant proportion, thus altering long-term averages and preserving year-to-year variation.Under the present-day climate regime, simulated methane emissions were variable between years and responded very strongly to changes in river discharge. The long-term average was 27 g C m-2 yr-1, with no significant linear trend over the model period. In the altered climate simulations, methane emissions were very sensitive to changes in precipitation amounts, with a 20% decrease in rainfall resulting in 30–43% declines in methane emissions. Predicted effects of temperature changes on methane emissions were less consistent, and were strongly dependent on assumptions made about the response of evapotranspiration to elevated temperatures. In general, hydrologic impacts of changes in evapotranspiration rates (such as may occur in response to temperature shifts) were more important than direct temperature effects on methane production.  相似文献   

12.
The dynamics of meteorological parameters in Siberia and the Altai–Sayan region in the 20th–21st centuries are analyzed. Significant trends characterizing the dynamics of the average temperature, precipitation, and standardized precipitation evapotranspiration index (SPEI) are revealed. Growing wildfire frequency in the area under study since the end of the 20th century has been detected. The annual variation of wildfires has a phase coincidence with the dynamics of mean temperatures, positively correlates with climate dryness, and negatively correlates with averaged precipitation data. An abrupt increase in wildfire frequency has been observed in the late 20th–early 21st centuries. The spatial redistribution of wildfires in the Altai–Sayan region in the early 21st century is revealed.  相似文献   

13.
Climate change is anticipated to affect freshwater resources, but baseline data on the functioning of tropical watersheds is lacking, limiting efforts that seek to predict how watershed processes, water supply, and streamflow respond to anticipated changes in climate and vegetation change, and to management. To address this data gap, we applied the distributed hydrology soil vegetation model (DHSVM) across 88 watersheds spanning a highly constrained, 4500 mm mean annual rainfall (MAR) gradient on Hawai‘i Island to quantify stream flow at 3-h time-steps for eight years in response to the independent and interactive effects of (1) large observed decrease in MAR; (2) projected warming and altered precipitation; and (3) four scenarios of forest invasion by the high water-demanding non-native tree species Psidium cattleianum. The model captured 62% of variability in measured flow at daily time scales, 95% at monthly time scales, and 98% at annual time scales. We found that low DHSVM modeled flow (Q 90) and storm flow (Q 10) responses to observed declines in rainfall dwarfed those of projected temperature increase or invasion, with flow decline positively correlated with MAR. As a percentage of streamflow, temperature and invasion reductions were negatively correlated with MAR. By comparison, warming alone had little effect on Q 90 or Q 10, but both decreased with increasing P. cattleianum cover, and projected effects of declining MAR were accentuated when combined with P. cattleianum and warming. Restoration mitigated some effects of climate warming by increasing stream base flows, with the relative effects of restoration being larger in drier versus wetter watersheds. We conclude that potential changes in climate in tropical environments are likely to exert significant effects on streamflow, but managing vegetation can provide mitigating benefits.  相似文献   

14.
We tested five hypotheses regarding the potential effects of precipitation change on spatial and temporal patterns of water flux, ion flux, and ion concentration in a semiarid, snowmelt-dominated forest in Little Valley, Nevada. Variations in data collected from 1995 to 1999 were used to examine the potential effects of snowpack amount and duration on ion concentrations and fluxes. Soil solution NO3 , NH4 +, and ortho-phosphate concentrations and fluxes were uniformly low, and the variations in concentration bore no relationship to snowmelt water flux inputs of these ions. Weathering and cation exchange largely controlled the concentrations and fluxes of base cations from soils in these systems; however, soil solution base cation concentrations were affected by cation concentrations during snowmelt episodes. Soil solution Cl and SO4 2– concentrations closely followed the patterns in snowmelt water, suggesting minimal buffering of either ion by soils. In contrast to other studies, the highest concentration and the majority of ion flux from the snowpack in Little Valley occurred in the later phases of snowmelt. Possible reasons for this include sublimation of the snowpack and dry deposition of organic matter during the later stages of snowmelt. Our comparison of interannual and spatial patterns revealed that variation in ion concentration rather than water flux is the most important driver of variation in ion flux. Thus, it is not safe to assume that changes in total precipitation amount will cause concomitant changes in ion inputs to this system.  相似文献   

15.
Background: Snow and ice melt provide sensitive indicators of climate change and serve as the primary source of stream flow in alpine basins.

Aims: We synthesise the results of hydrological and hydrochemical studies during the period 1995–2014, building on a long history of earlier work focused on snow and water on Niwot Ridge and the adjacent Green Lakes Valley (GLV), which is part of the Niwot Ridge Long Term Ecological Research site (NWT LTER).

Methods: These studies are discussed in the context of how snow, snowmelt and runoff reflect changing local climate. We review recent results of snow, snowmelt, hydrology and hydrochemistry from the plot to the basin scale, utilising new tools such as continuous global positioning system (GPS) measurements of snow depth, along with remotely-sensed measurements of snow-covered area and melt, combined with long-term measurements of snow properties, discharge and solute and isotopic content of water.

Results and Conclusions: Surface–groundwater interactions are important components of water quantity and quality in alpine basins. Some or most snowmelt infiltrates underlying soils and bedrock, transporting soil and bedrock products to surface waters. Infiltrating snowmelt, along with increased melt of stored ice, increases the hydrologic connectivity between the terrestrial and aquatic systems. Alpine basins are being impacted by increases in atmospheric nitrogen deposition, which has caused changes in soil microbial processes such as nitrification. Nitrate, dissolved organic carbon and dissolved organic nitrogen are thus flushed from soils and talus to streams. Our long-term results show that alpine catchments, such as Green Lake 4 at NWT LTER+, have the greatest sensitivity and least resilience to climate warming, with any warming leading to increased water yields.  相似文献   

16.
Whereas warming enhances plant nutrient status and photosynthesis in most terrestrial ecosystems, dryland vegetation is vulnerable to the likely increases in evapotranspiration and reductions in soil moisture caused by elevated temperatures. Any warming‐induced declines in plant primary production and cover in drylands would increase erosion, land degradation, and desertification. We conducted a four‐year manipulative experiment in a semi‐arid Mediterranean ecosystem to evaluate the impacts of a ~2°C warming on the photosynthesis, transpiration, leaf nutrient status, chlorophyll content, isotopic composition, biomass growth, and postsummer survival of the native shrub Helianthemum squamatum. We predicted that warmed plants would show reduced photosynthetic activity and growth, primarily due to the greater stomatal limitation imposed by faster and more severe soil drying under warming. On average, warming reduced net photosynthetic rates by 36% across the study period. Despite this strong response, warming did not affect stomatal conductance and transpiration. The reduction of peak photosynthetic rates with warming was more pronounced in a drought year than in years with near‐average rainfall (75% and 25–40% reductions relative to controls, respectively), with no indications of photosynthetic acclimation to warming through time. Warmed plants had lower leaf N and P contents, δ13C, and sparser and smaller leaves than control plants. Warming reduced shoot dry mass production by 31%. However, warmed plants were able to cope with large reductions in net photosynthesis, leaf area, and shoot biomass production without changes in postsummer survival rates. Our findings highlight the key role of nonstomatal factors (biochemical and/or nutritional) in reducing net carbon assimilation rates and growth under warming, which has important implications for projections of plant carbon balance under the warmer and drier climatic scenario predicted for drylands worldwide. Projected climate warming over the coming decades could reduce net primary production by about one‐third in semi‐arid gypsum shrublands dominated by H. squamatum.  相似文献   

17.
Mountain plants are particularly sensitive to climate warming because snowmelt timing exerts a direct control on their reproduction. Current warming is leading to earlier snowmelt dates and longer snow-free periods. Our hypothesis is that high-mountain Mediterranean plants are not able to take advantage of a lengthened snow-free period because this leads to longer drought that truncates the growing season. However, reproductive timing may somewhat mitigate these negative effects through temporal shifts. We assessed the effects of flowering phenology on the reproductive success of Silene ciliata, a Mediterranean high-mountain plant, across an altitudinal gradient during two climatically contrasting years. The species showed a late-flowering pattern hampering the use of snowmelt water. Plant fitness was largely explained by the elapsed time from snowmelt to onset of flowering, suggesting a selective pressure towards early flowering caused by soil moisture depletion. The proportion of flowering plants decreased at the lowest population, especially in the drier year. Plants produced more flowers, fruits and seeds at the highest population and in the mild year. Our results indicate that water deficit in dry years could threaten the lowland populations of this mountainous species, while high-altitude environments are more stable over time.  相似文献   

18.
Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring.This article is part of the themed issue ‘The interaction of fire and mankind’.  相似文献   

19.

Background

The synergetic effects of recent rising atmospheric CO2 and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends.

Methodology/Principal Findings

Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9° latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment – BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist.

Conclusions

Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.  相似文献   

20.
We model future changes in land biogeochemistry and biogeography across East Africa. East Africa is one of few tropical regions where general circulation model (GCM) future climate projections exhibit a robust response of strong future warming and general annual‐mean rainfall increases. Eighteen future climate projections from nine GCMs participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment were used as input to the LPJ dynamic global vegetation model (DGVM), which predicted vegetation patterns and carbon storage in agreement with satellite observations and forest inventory data under the present‐day climate. All simulations showed future increases in tropical woody vegetation over the region at the expense of grasslands. Regional increases in net primary productivity (NPP) (18–36%) and total carbon storage (3–13%) by 2080–2099 compared with the present‐day were common to all simulations. Despite decreases in soil carbon after 2050, seven out of nine simulations continued to show an annual net land carbon sink in the final decades of the 21st century because vegetation biomass continued to increase. The seasonal cycles of rainfall and soil moisture show future increases in wet season rainfall across the GCMs with generally little change in dry season rainfall. Based on the simulated present‐day climate and its future trends, the GCMs can be grouped into four broad categories. Overall, our model results suggest that East Africa, a populous and economically poor region, is likely to experience some ecosystem service benefits through increased precipitation, river runoff and fresh water availability. Resulting enhancements in NPP may lead to improved crop yields in some areas. Our results stand in partial contradiction to other studies that suggest possible negative consequences for agriculture, biodiversity and other ecosystem services caused by temperature increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号