首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both stem cell plasticity and cell fusion have been implicated as physiological responses to tissue injury. It remains the ultimate goal for the future to understand the regulatory control of each during regeneration. In our recent paper by Jang et al. we demonstrate the repair of damaged liver by bone marrow derived stem cells (SCs) in response to microenvironmental cues. Within 48 hrs after transplantation or co-culture, conversion of SCs into liver cells was observed. Fusion was ruled out as a major mechanism of this functional regeneration. Direct differentiation of SCs into liver epithelial cells may be clinically useful. However, if plasticity or fusion results in abnormal genetic changes they could be harmful. Before proceeding with therapeutic applications, the consequences of cellular therapy accompanying both plasticity and fusion must be examined in multiple animal models. Functional repair should also be demonstrated prior to treatment in patients.  相似文献   

2.

Aims

The coronary artery ligation model in rodents mimics human myocardial infarction (MI). Normally mechanical ventilation and prolonged anesthesia period are needed. Recently, a method has been developed to create MI by popping-out the heart (without ventilation) followed by immediate suture ligation. Mortality is high due to the time-consuming suture ligation process while the heart is exposed. We sought to improve this method and reduce mortality by rapid coronary ligation using a surgical clip instead of a suture.

Methods and Results

Mice were randomized into 3 groups: clip MI (CMI), suture MI (SMI), or sham (SHAM). In all groups, heart was manually exposed without intubation through a small incision on the chest wall. Unlike the conventional SMI method, mice in the CMI group received a metal clip on left anterior descending artery (LAD), quickly dispensed by an AutoSuture Surgiclip. The CMI method took only 1/3 of ligation time of the standard SMI method and improved post-MI survival rate. TTC staining and Masson’s trichrome staining revealed a similar degree of infarct size in the SMI and CMI groups. Echocardiograph confirmed that both SMI and CMI groups had a similar reduction of ejection fraction and fraction shortening over the time. Histological analysis showed that the numbers of CD68+ macrophages and apoptotic cells (TUNEL-positive) are indistinguishable between the two groups.

Conclusion

This new method, taking only less than 3 minutes to complete, represents an efficient myocardial infarction model in rodents.  相似文献   

3.
The purpose of this study was to investigate the effects of multiple infusions of allogeneic MSCs on glucose homeostasis and morphometry of pancreatic islets in high- fat diet (HFD) fed mice. Swiss mice were fed standard diet (C group) or HFD (HFD group). After 8 weeks, animals of HFD group received sterile phosphate-buffered saline infusions (HFD-PBS) or four infusions of MSCs one week apart (HFD-MSCs). Fasting glycemia (FG) was determined weekly and glucose (GTT) and insulin (ITT) tolerance tests were performed 4, 8, 12, and 16 weeks after the infusions of MSCs. The MSCs transplanted mice were classified as responder (FG < 180 mg/dL, 72.2% of transplanted mice) or non-responder (FG > 180mg/dL, 28.8%) Seven weeks after MSCs infusions, FG decreased in HFD-MSCs responder mice compared with the HFD-PBS group. Sixteen weeks post MSCs infusions, GTT and ITT areas under the curve (AUC) decreased in HFD-MSCs responder mice compared to HFD-PBS group. Serum insulin concentration was higher in HFD-PBS group than in control animals and was not different compared with the other groups. The relative volume of α-cells was significantly smaller in HFD-PBS group than in C group and significantly higher in HFD-MSCs-NR than in HFD-PBS and HFD-MSCs-R groups. Cell apoptosis in the islets was higher in HFD-PBS group than in C group, and lower in HFD-MSCs responder mice than in HFD-PBS group and non-responder animals. The results demonstrate the ability of multiple infusions of MSCs to promote prolonged decrease in hyperglycemia and apoptosis in pancreatic islets and increase in insulin sensitivity in HFD fed mice.  相似文献   

4.
本文研究了人骨髓来源的间充质干细胞(MSCs)的成骨及成脂分化的潜能.通过加入诱导成骨的诱导剂,人的MSCs出现成骨分化的机箱,通过碱性磷酸酶活性测定,茜素红染色及主要调控基因BMP2和Runx2的表达,确定了MSCs具有成骨分化的潜能.对于成脂分化,通过油红O染色,及主要标志基因PPARγ的表达确定其具有成脂分化的潜能.所以,从骨髓分离的到的MSCs纯度达到标准,并且具有成骨成脂分化的多向潜能,是一种理想的实验模型细胞.  相似文献   

5.
目的:观察氧化苦参碱(oxymatrine,OMT)对骨髓来源细胞增殖的影响.方法:应用MTr比色法、流式细胞仪检测法、集落形成法和免疫细胞活性测定等方法,检测OMT对白血病细胞K562的抑制作用;骨髓造血干细胞的集落形成实验和脾细胞对肿瘤细胞的杀伤的生物活性试验,检测OMT对小鼠免疫和造血的影响.结果:(1)不同浓度的OMT可明显抑制白血病细胞K562细胞的增殖、集落形成,导致细胞凋亡(P<0.05),且作用呈浓度依赖性.(2)OMT可以促进小鼠骨髓粒系造血,且在0.2475 mg/mL时达到峰值.(3)OMT可抑制小鼠的免疫功能.结论:OMT可抑制白血病K562细胞的增殖并诱导其凋亡,同时抑制小鼠的免疫功能,促进小鼠骨髓CFU-GM的形成,表现出对骨髓来源细胞生长的双向调节作用.  相似文献   

6.
Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function.  相似文献   

7.
The transversal differentiation of bone marrow stroma cell (BMSCs) into neural stem cells (NSCs) has attracted much attention in recent years because of their therapeutic potential. However, the problem in therapeutic application of NSCs was how to confirm whether neuron-like cells differentiated from bone marrow stroma cell-derived neural stem cells (BMSCs-D-NSCs) possess corresponding functions of neurochemistry and electrophysiology. In the present study, we tried to affirm the function of neuron-like cells differentiated from BMSCs-D-NSCs in vitro. The BMSCs were harvested by gradient centrifugation in Ficoll-Paque and cultured in “NSCs medium”. Immunocytochemistry was used to detect positive expression of neuron-specific nuclear protein (NeuN) in neuron-like cells derived from the BMSCs-D-NSCs. High-pressure liquid chromatography (HPLC) was used to identify neuron-like cells by detecting excitable amino acids [aspartic acid (Asp), glutamic acid (Glu)], inhibited amino acids [glycine (Gly), gamma (γ) -aminobutyric acid (GABA), alanine (Ala)] or monoamines [noradrenaline (NE), 5-hydroxytryptamine (5-HT), dopamine (DA)]. Electrophysiological properties of the neuron-like cells were also examined using patch clamp analysis to verify their neuron-like functions. It was found that the neuron-like cells differentiated from the BMSCs-D-NSCs could express positive NeuN, synthesize and excrete amino acids, and show some typical electrophysiological properties including the typical Na+ and K+ ion channel membrane current under the voltage patch clamp condition, the typical static electrical membrane potential under the current patch clamp condition, and the differential membrane capacitance and resistance values in series between undifferentiated BMSCs-D-NSCs and differentiated neuron-like cells under the whole-cell patch clamp condition. The neuron-like cells differentiated from BMSCs-D-NSCs exhibit both neuron-like biochemical function and some corresponding electrophysiological properties.  相似文献   

8.
利用骨髓间充质干细胞(Bone mesenchymal stem cells,BMSCs)治疗疾病已经逐渐成为现实,但是作为被移植的种子细胞,BMSCs体外传代能力非常有限,种子细胞来源极为贫乏。本研究通过差速贴壁筛选的方法分离出一种猪BMSCs的衍生细胞株,命名为猪骨髓间充质干细胞衍生细胞(Bone mesenchymal stem-derived cells,BMSDCs)。分别对BMSDCs与BMSCs细胞进行细胞生物学特性分析,探讨其体外诱导分化特性,并应用流式细胞术测定细胞表面标记物。结果表明,BMSC和BMSDCs细胞倍增时间分别为31.3 h和30.3 h,平均传代时间分别为3-5 d和2-3 d;两种细胞均阳性表达CD34、CD90,阴性表达CD44、CD45;经体外诱导后均可分化为成脂细胞和成肌细胞。在传代能力上,前者可传代15至20次,后者可长期传代(200次以上)且维持正常染色体特征。研究认为在适宜的实验条件下,体外培养的猪骨髓间充质干细胞的衍生细胞——BMSDCs能够稳定生存增殖并维持BMSCs多向分化潜能,可作为组织工程的理想种子细胞。  相似文献   

9.

Background

PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI), and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO) mice are characterized by a marked reduction of SR-BI protein expression (∼95%) in the liver (lesser or no reduction in other organs) with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol (‘Western’) diet-fed murine apolipoprotein E (apoE) KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.

Principal Findings

Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic ‘Paigen’ diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO) mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids) and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted), were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.

Conclusions

These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.  相似文献   

10.
The myogenic potential of bovine fetal MSC (bfMSC) derived from bone marrow (BM) remains unknown; despite its potential application for the study of myogenesis and its implications for livestock production. In the present study, three protocols for in vitro myogenic differentiation of bfMSC based on the use of DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza), myoblast-secreted factor Galectin-1 (Gal-1), and myoblast culture medium SkGM-2 BulletKit were used. Plastic-adherent bfMSC were isolated from fetal BM collected from abattoir-derived fetuses. Post-thaw viability analyses detected 85.6% bfMSC negative for propidium iodine (PI). Levels of muscle regulatory factors (MRF) MYF5, MYF6, MYOD, and DES mRNA were higher (P?MYOD mRNA (Days 7 to 21) and up-regulation of MYF6 (Day 7), MYF5, and DES mRNA (Day 21). Gal-1 and SkGM-2 BulletKit induced sequential down-regulation of early MRF (MYF5) and up-regulation of intermediate (MYOD) and late MRF (DES) mRNA. Moreover, DES and MYF5 were immunodetected in differentiated bfMSC. In conclusion, protocols evaluated in bfMSC induced progress into myogenic differentiation until certain extent evidenced by changes in MRF gene expression.  相似文献   

11.
探索恒河猴骨髓间质干细胞(MSC)的体外分离培养方法,为其应用提供实验基础。取恒河猴骨髓细胞悬液,经梯度离心去除大部分血细胞,取含有MSC的中间单核细胞层,在含10%胎牛血清及1ng/mL碱性成纤维细胞生长因子的L-DMEM中培养扩增,并不断换液去除杂细胞,经过18d的原代培养,获得呈致密单层生长的MSC,其形态为较规则的长梭形细胞,排列有方向性,呈现一定的漩涡状、辐射状生长趋势。将原代细胞以1∶2传代,传代培养后期,细胞增殖速度逐渐变缓,细胞形态逐渐出现三角形、多边形及扁平宽大形等不规则形态。结果显示,恒河猴骨髓间质干细胞可在体外进行传代培养,但需进一步优化其培养条件。  相似文献   

12.
We present the results of a study on the proliferative and differentiation potential of individual clones of stromal fibroblasts growing in monolayer cultures of bone marrow cells. Each precursor cell yielding a large colony in primary culture is capable of up to 34 doublings in vitro. The transplantation of clones or monoclonal strains of stromal fibroblasts into the open system results in the formation of microenvironment consisting of the bone and reticular tissue and is suitable for the differentiation of all three lines of hemopoiesis. Evidence has been obtained that, in a closed system, individual clones are capable of differentiation into the bone, cartilaginous, and reticular tissues. In other words, the adult organism has a common cell precursor for these tissues.  相似文献   

13.
14.
15.
Atherosclerosis is a multifactorial, long-lasting process in humans. Accordingly, animal models in which more rapid changes occur can be useful for the study of this process. Among such models are apolipoprotein E-deficient (apoE?/?) mice, which give insight into the human process. ApoE?/? mice show impaired clearing of plasma lipoproteins and develop atherosclerosis in a short time, and hence they are an excellent model in which to assess the impact of dietary factors. This review considers lipid metabolism and inflammation as well as nutritional constituents affecting atherosclerosis, with reference to apoE?/? mice, and discusses the mechanisms through which they act.  相似文献   

16.
Recently, preclinical studies have shown that allogeneic adipose-derived stem cells (ASCs), like bone marrow-derived mesenchymal stem cell (BMSCs) have significant clinical benefits in treating cardiovascular diseases, such as ischemic/infarcted heart. In this study, we tested whether ASCs are also immune tolerant, such that they can be used as universal donor cells for myocardial regenerative therapy. The study also focuses on investigating the potential therapeutic effects of human ASCs (hASCs) for myocardial infarction in xenotransplant model, and compares its effects with that of hBMSCs. The in vitro study confirms the superior proliferation potential and viability of hASCs under normoxic and stressed hypoxic conditions compared with hBMSCs. hASCs also show higher potential in adopting cardiomyocyte phenotype. The major findings of the in vivo study are that (1) both hASCs and hBMSCs implanted into immunocompetent rat hearts with acute myocardial infarction survived the extreme environment of xenogeneic mismatch for 6 weeks; (2) both hASCs and hBMSCs showed significant improvement in myocardial pro/anti-inflammatory cytokine levels with no detectable inflammatory reaction, despite the lack of any immunosuppressive therapy; and (3) hASCs contributed to the remarkable improvement in cardiac function and reduced infarction which was significantly better than that of hBMSC and untreated control groups. Thus, our findings suggest the feasibility of using ASCs, instead of BMSCs, as universal donor cells for xenogeneic or allogeneic cell therapy.  相似文献   

17.

Objective

Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.

Methods

For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.

Results

In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in the superficial cartilage.

Conclusion

Cartilage derived from MSCs expressed lubricin protein both in vitro and in vivo. Aggregation promoted lubricin expression of MSCs in vitro and transplantation of aggregates of MSCs regenerated cartilage including the superficial zone in a rat osteochondral defect model. Our results indicate that aggregated MSCs could be clinically relevant for therapeutic approaches to articular cartilage regeneration with an appropriate superficial zone in the future.  相似文献   

18.
19.
It has been well accredited that the neural stem cells (NSCs) derived from bone marrow stroma cells (BMSCs) can be used as the therapeutic application. However, their efficacy and safety in therapeutic application are uncertain. In this experiment, the trace marking and oncogenicity of NSCs derived from BMSCs (BMSCs-D-NSCs) were studied. The BMSCs were harvested by gradient centrifugation and cultured in "NSCs medium" in vitro. The verified CD133/Nestin-positive BMSCs-D-NSCs were then transplanted into nude mice to detect the oncogenicity, into the right lateral cerebral ventricle or right caudae putamen and substantia nigra to examine, whether the symptoms were improved in Parkinson's Disease (PD) models after transplantation, by both SPECT image assay of dopamine transporter (DAT) in corpus striatum and its average standard uptake value (SUVave) in corpus striatum and thalamus. Tissue samples and surviving model animals were studied at 1, 3, and 6 months post-transplantation. Before transplantation, the cells were labeled with BrdU or rAAV-GFP for the pathological sections, and with Feridex for the in vivo trace by MRI assay. The concanavalin A (ConA) agglutination test, stop-dependence test with soft agar, karyotype analysis of chromosome G zone in BMSCs-D-NSCs, and the nude mouse neoplasia test were also performed. The BrdU, rAAV-GFP or Feridex can be used as trace markers of BMSCs-D-NSCs during transplantation. The transplanted BMSCs-D-NSCs displayed neither toxicity nor neoplasia up to 6 months in vivo, but could play an important role in improving the symptoms of the animals with degenerative diseases like PD.  相似文献   

20.

Introduction

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently been shown to express key cardiac proteins and improve in vivo cardiac function when administered following myocardial infarction. However, the efficacy of hiPSC-derived cell therapies, in direct comparison to current, well-established stem cell-based therapies, is yet to be elucidated. The goal of the current study was to compare the therapeutic efficacy of human mesenchymal stem cells (hMSCs) with hiPSC-CMs in mitigating myocardial infarction (MI).

Methods

Male athymic nude hyrats were subjected to permanent ligation of the left-anterior-descending (LAD) coronary artery to induce acute MI. Four experimental groups were studied: 1) control (non-MI), 2) MI, 3) hMSCs (MI+MSC), and 4) hiPSC-CMs (MI+hiPSC-derived cardiomyocytes). The hiPSC-CMs and hMSCs were labeled with superparamagnetic iron oxide (SPIO) in vitro to track the transplanted cells in the ischemic heart by high-field cardiac MRI. These cells were injected into the ischemic heart 30-min after LAD ligation. Four-weeks after MI, cardiac MRI was performed to track the transplanted cells in the infarct heart. Additionally, echocardiography (M-mode) was performed to evaluate the cardiac function. Immunohistological and western blot studies were performed to assess the cell tracking, engraftment and cardiac fibrosis in the infarct heart tissues.

Results

Echocardiography data showed a significantly improved cardiac function in the hiPSC-CMs and hMSCs groups, when compared to MI. Immunohistological studies showed expression of connexin-43, α-actinin and myosin heavy chain in engrafted hiPSC-CMs. Cardiac fibrosis was significantly decreased in hiPSC-CMs group when compared to hMSCs or MI groups. Overall, this study demonstrated improved cardiac function with decreased fibrosis with both hiPSC-CMs and hMSCs groups when compared with MI group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号