首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic diversity is essential for species to sustain their populations and evolutionary potential. In order to develop effective conservation strategies for rare species, it is necessary to understand differences in patterns of genetic diversity between common and rare species. Data about population genetic structure is important to design effective conservation strategies for rare species. In this study, we compared the genetic diversity and population genetic structure of a common species, Rhododendron weyrichii, to those of two rare species, Rhododendron sanctum and Rhododendron amagianum, with different geographic distributions. We analyzed five microsatellite loci in 16 populations of R. weyrichii, 9 populations of R. sanctum, and 6 populations of R. amagianum. As expected, the level of genetic diversity indicated by allelic richness and gene diversity was lower for the rare species R. sanctum than for the common species R. weyrichii. However, there was no statistically significant difference in genetic diversity between R. weyrichii and the other rare species, R. amagianum. Analyses of the isolation-by-distance pattern, neighbor-joining trees, and Bayesian clustering indicated that R. sanctum had a strong population genetic structure whereas R. amagianum exhibited very weak genetic structure among populations and that there was moderate population genetic structure for R. weyrichii. Therefore, the degree and pattern of population genetic structure in each species was unrelated to its rarity and instead merely reflected its geographic distribution.  相似文献   

2.
The bull shark (Carcharhinus leucas) is a widely distributed, large coastal shark species known to travel long distances. These characteristics, coupled with the species?? long life span and late age of maturity, would lead one to predict significant global genetic exchange among bull shark populations. By contrast, data show localized depletion in some areas of large coastal shark fisheries, indicating some geographic isolation may exist. We examined genetic variation in the control region of mitochondrial DNA and at five nuclear microsatellite loci in bull sharks sampled from the western Atlantic to investigate the degree of population subdivision. The average per sample haplotype and nucleotide diversity in the mtDNA (0.51 ± 0.26 and 0.12% ± 0.12, respectively) and expected heterozygosity (0.84) in the microsatellite loci contrast sharply in having lower and higher values (respectively) relative to many other shark species. Significant structure exists between the Brazilian and all northern populations at the mtDNA control region (pairwise ??ST > 0.8, P < 0.001), but not at the nuclear microsatellite loci. Adjacent northern populations show weak to no genetic differentiation for both markers. These results are congruent with restricted maternal gene flow between populations caused by female site fidelity to nursery areas. We estimate the current effective population size to be around 160,000 and 221,000 individuals for the southern and northern Atlantic populations, respectively. The philopatric habits and the relatively low levels of mtDNA genetic diversity observed in bull sharks must be considered in the conservation of this species. Our results indicate that effective bull shark management strategies will require local, regional, and international attention and cooperation.  相似文献   

3.
《Journal of Asia》2020,23(3):781-790
The silver stripped skipper, Leptalina unicolor, is listed as an endangered species with a paucity of leftover populations in Korea. Prior population genetic analysis is essential for the establishment of effective conservation strategies. In the present study, we investigated the genetic diversity and the relationships of L. unicolor populations in Korea using 12 newly developed L. unicolor-specific microsatellite markers and two mitochondrial DNA (mtDNA) sequences (a total of 1283 bp from COI and CytB). Due to the endangered status and rarity, a total of 33 individuals from two localities in Gangwon-do Province (Seohwa and Girin) and one in Gyeongsangnam-do Province (Danjang) were sampled. The concatenated mtDNA sequences revealed very low genetic diversity in each population, with only one to three independent haplotypes per population. FST, principal coordinate analysis, and independent structural analysis of the concatenated mtDNA sequences and the 12 microsatellite loci developed in this study showed that each L. unicolor population in Korea is nearly completely isolated, although inbreeding has not yet occurred. Long-term conservation habitat recovery that increases the available population appears to be important in the prevention of genetic drift and inbreeding, which occur in small isolated populations and reduce the viability of populations under fluctuating environmental conditions.  相似文献   

4.
The giant garter snake, Thamnophis gigas, is a threatened species endemic to California’s Central Valley. We tested the hypothesis that current watershed boundaries have caused genetic differentiation among populations of T. gigas. We sampled 14 populations throughout the current geographic range of T. gigas and amplified 859 bp from the mitochondrial gene ND4 and one nuclear microsatellite locus. DNA sequence variation from the mitochondrial gene indicates there is some genetic structuring of the populations, with high FST values and unique haplotypes occurring at high frequency in several populations. We found that clustering populations by watershed boundary results in significant between-region genetic variance for mtDNA. However, analysis of allele frequencies at the microsatellite locus NSU3 reveals very low FST values and little between-region variation in allele frequencies. The discordance found between mitochondrial and microsatellite data may be explained by aspects of molecular evolution and/or T. gigas life history characteristics. Differences in effective population size between mitochondrial and nuclear DNA, or male-biased gene flow, result in a lower migration rate of mitochondrial haplotypes relative to nuclear alleles. However, we cannot exclude homoplasy as one explanation for homogeneity found for the single microsatellite locus. The mitochondrial nucleotide sequence data supports conservation practices that identify separate management units for T. gigas.  相似文献   

5.
Gene flow among small fragmented populations is critical for maintaining genetic diversity, and therefore the evolutionary potential of a species. Concern for two New Zealand endemic subspecies, the Hector’s (Cephalorhynchus hectori hectori) and Maui’s (C. h. maui) dolphins, arises from their low abundance, slow rate of reproduction, and susceptibility to fisheries-related mortality. Our work examined genetic differentiation and migration between the subspecies and among regional and local Hector’s dolphin populations using mitochondrial (mt) DNA and microsatellite genotypes from 438 samples. Results confirmed earlier reports of a single unique mtDNA control region haplotype fixed in the Maui’s dolphin, and provided new evidence of reproductive isolation from Hector’s dolphins (9-locus microsatellite F ST?=?0.167, P?<?0.001). Independent evolutionary trajectories were also supported for Hector’s dolphin populations of the East Coast, West Coast, Te Waewae Bay and Toetoe Bay. Low asymmetrical migration rates were found among several Hector’s dolphin populations and assignment tests identified five Hector’s dolphins likely to have a migrant father from another regional population. There appears to be sufficient step-wise gene flow to maintain genetic diversity within the East and West Coasts; however, the two local South Coast populations exhibited a high degree of differentiation given their close proximity (~100?km). To maintain the evolutionary potential and long-term survival of both subspecies, genetic monitoring and conservation management must focus on maintaining corridors to preserve gene flow and prevent further population fragmentation and loss of genetic diversity, in addition to maintaining local population abundances.  相似文献   

6.
Female otariids (eared seals) frequently display strong levels of philopatry, a behaviour that has the potential to influence population structure, particularly at the mitochondrial level. Conversely, male otariids often move between breeding colonies, likely facilitating nuclear gene flow between colonies. Such gender-specific movements have the potential to influence species population structure. Here we investigate the genetic population structure of the endangered New Zealand (NZ) sea lion, using nuclear (microsatellite) and mitochondrial molecular markers, with the intention to better inform conservation through identification of management units for the species. The strong levels of female philopatry in this species have potential to lead to population structure at the mitochondrial loci. In contrast, weak or no population structure is expected across nuclear loci. NZ sea lions were sampled from the main breeding areas across the species’ current distribution (three Auckland Islands sites, two Campbell Island sites, one Stewart Island site and one Otago Peninsula site). Individuals were screened for microsatellite (n?=?271; 16 loci) and mitochondrial (n?=?56; 1027 bp D-loop and 1189 bp cytb). Despite a small (c. 9880 individuals) population size, moderate levels of microsatellite variation are observed in the NZ sea lions, in contrast to low levels of mitochondrial genetic variation. Results from mitochondrial DNA analyses revealed no population structure, suggesting that the strong level of female philopatry in NZ sea lions alone is not sufficient to maintain genetic population structure. Due to the frequent male movements between breeding colonies, no population structure was detected across the nuclear loci either. The absence of genetic structure suggests that, from a genetic perspective, NZ sea lions can be considered to be a single population. Despite this, the differing impacts of threats (e.g. fisheries by-catch) to each individual breeding colony must also be taken into consideration when defining management units for this endangered species.  相似文献   

7.
The Cook Islands endemic kakerori (Pomarea dimidiata) underwent a severe population decline following the introduction of ship rats (Rattus rattus) in the late 1800s. By 1989, the sole population on Rarotonga consisted of 29 known birds. Subsequent intensive management efforts enabled this population to recover to around 250?C300 birds in recent years. This study, using microsatellite and mitochondrial DNA markers, assesses the level of genetic diversity and the genetic structure of the contemporary kakerori population on Rarotonga. No mitochondrial control region and cytochrome b haplotype diversity was found in the 11 samples examined at each locus. In 81 samples genotyped at 7 polymorphic microsatellite loci, an average of 4 alleles per locus were found, with an average observed heterozygosity of 0.65. No subpopulation division was found in this population. There was no evidence of inbreeding, but genetic bottleneck tests showed that the population had indeed experienced a significant genetic bottleneck. Recovery of the kakerori was successful in the past two decades despite low genetic diversity in terms of allelic diversity. Our data suggested that low allelic diversity did not hamper population expansion and the continued survival of this species, however, longer-term effects are still possible.  相似文献   

8.
9.
The shortnose sturgeon, Acipenser brevirostrum, oft considered a phylogenetic relic, is listed as an “endangered species threatened with extinction” in the US and “Vulnerable” on the IUCN Red List. Effective conservation of A. brevirostrum depends on understanding its diversity and evolutionary processes, yet challenges associated with the polyploid nature of its nuclear genome have heretofore limited population genetic analysis to maternally inherited haploid characters. We developed a suite of polysomic microsatellite DNA markers and characterized a sample of 561 shortnose sturgeon collected from major extant populations along the North American Atlantic coast. The 181 alleles observed at 11 loci were scored as binary loci and the data were subjected to multivariate ordination, Bayesian clustering, hierarchical partitioning of variance, and among-population distance metric tests. The methods uncovered moderately high levels of gene diversity suggesting population structuring across and within three metapopulations (Northeast, Mid-Atlantic, and Southeast) that encompass seven demographically discrete and evolutionarily distinct lineages. The predicted groups are consistent with previously described behavioral patterns, especially dispersal and migration, supporting the interpretation that A. brevirostrum exhibit adaptive differences based on watershed. Combined with results of prior genetic (mitochondrial DNA) and behavioral studies, the current work suggests that dispersal is an important factor in maintaining genetic diversity in A. brevirostrum and that the basic unit for conservation management is arguably the local population.  相似文献   

10.
The otton frog (Babina subaspera) is an endangered species endemic to the Amami Islands, Japan. High predation pressure from an introduced carnivore, the mongoose, has caused declines in the frog populations and created a large habitat gap around an urban area. To promote effective conservation, we investigated the genetic status of the species and examined the effect of the habitat gap on gene flow among populations. Using five polymorphic microsatellite loci and mitochondrial DNA sequences, we investigated genetic diversity, genetic structure and gene flow in B. subaspera populations on the islands of Amami-Oshima and Kakeroma-jima. The expected heterozygosity (H E) within each locality was generally high (range: 0.67–0.85), indicating that B. subaspera maintains high genetic diversity. However, genetic differentiation was observed, and the two populations, TAG and KAR, showed little gene flow with other populations. The clustering and F ST analyses also predicted that these two populations were clearly distinct. According to the mitochondrial DNA analysis, the observed genetic differentiation occurred relatively recently. Possible barriers such as mountain ridges, rivers or roads did not result in genetic separation of the populations. These data support the hypothesis that the habitat gap created by an introduced predator prevented the gene flow among B. subaspera populations. When developing conservation strategies for B. subaspera, focus should be directed to these two isolated populations; careful monitoring of population size and genetic diversity should be conducted along with the mongoose elimination project ensues.  相似文献   

11.
Labeo rohita, popularly known as rohu is a widely cultured species in the whole Indian subcontinent. Knowledge of the genetic diversity of this species is important to support management and conservation programs which will subsequently help in sustainable production of this species. DNA markers, mostly microsatellite markers are excellent tool to evaluate genetic variation of populations. Genetic variation of three wild and one farm population was assessed using eleven microsatellite loci. In analyzing 192 samples, the number of alleles ranged from 4 to 23; observed heterozygosity 0.500 to 0.870 and expected heterozygosity from 0.389 to 0.878. Exact test for Hardy Weinberg disequilibrium revealed that each riverine sample had at least one locus not in equilibrium except one river. Negative inbreeding coefficients (FIS) were observed across populations indicating very high level of genetic diversity but little genetic differentiation among populations.  相似文献   

12.
Crustaceans that initially colonize a freshwater temporary pond can strongly bias the subsequent genetic composition of the population, causing nearby populations to be genetically distinct. In addition, these crustaceans have various reproductive modes that can influence genetic differentiation and diversity within and between populations. We report on two species of tadpole shrimp, Triops newberryi and Triops longicaudatus “short”, with different reproductive modes. Reproduction in the tadpole shrimp can occur clonally (parthenogenesis), with self fertilization (hermaphroditism), or through outcrossing of hermaphrodites with males (androdioecy). For all these reproductive modes, population genetic theory predicts decreased genetic diversity and increased population differentiation. Here we use mitochondrial control region (mtCR) sequences and nuclear microsatellite loci to determine if the difference in reproductive mode affects the high genetic structure typical of persistent founder effects. Previous authors indicated that T. newberryi is androdioecious because populations are composed of hermaphrodites and males, and T. longicaudatus “short” is hermaphroditic or parthenogenetic because males are absent. In our data, T. newberryi and T. longicaudatus “short” populations were highly structured genetically over short geographic distances for mtCR sequences and microsatellite loci (T. newberryi: ΦST = 0.644, F ST = 0.252, respectively; T. l. “short”: invariant mtCR sequences, F ST = 0.600). Differences between the two Triops species in a number of diversity measures were generally consistent with expectations from population genetic theory regarding reproductive mode; however, three of four comparisons were not statistically significant. We conclude the high genetic differentiation between populations is likely due to founder effects and results suggest both species are composed of selfing hermaphrodites with some level of outcrossing; the presence of males in T. newberryi does not appreciably reduce inbreeding. We cannot exclude the possibility that males in T. newberryi are non-reproductive individuals and the two species have the same mating system.  相似文献   

13.
Roads can substantially impact the population connectivity of a wide range of terrestrial vertebrates, often resulting in loss of genetic diversity and an increase of spatial genetic structure. We studied the Western Diamond-backed Rattlesnake (Crotalus atrox), a large and abundant venomous predator, to test the hypothesis that a large and relatively new roadway in Arizona (Interstate Highway I-10) is a barrier that impacts gene flow and population genetics via habitat fragmentation. Based on 72 C. atrox sampled from three specific sampling sites (“subpopulations”) on both the west and east corridors of I-10, we used 30 nuclear microsatellite DNA loci and three mitochondrial DNA genes (2615 bp) to assess genetic diversity and structure, estimate effective population size (N e ), and describe patterns of gene flow. We found no evidence for loss of genetic diversity or a decrease in N e between the three subpopulations. Our microsatellite analysis showed that two subpopulations in close proximity (4 km), but separated by I-10, showed greater levels of genetic differentiation than two subpopulations that were separated by a greater distance (7 km) and not by I-10 or any other obvious barriers. Mitochondrial DNA analyses showed no significant genetic differentiation nor any indication of historically impeded gene flow. Tajima’s D and mismatch distribution tests revealed that demographic expansion is occurring in the overall population (all three subpopulations). Bayesian clustering and spatial genetic autocorrelation analyses of microsatellite data showed resistance to gene flow at the approximate location of I-10. Simulations that investigated gene flow between the subpopulations (with and without a highway barrier present) were consistent with our molecular results. We conclude that I-10 has reduced gene flow in a population of an important reptilian predator of the Sonoran Desert in southern Arizona and make conservation recommendations for reversing this trend.  相似文献   

14.
The western Himalayan yew (Taxus contorta Griffith, synonym Taxus fuana Nan Li & R.R. Mill), one of the highly prized tree species for its anticancer properties, is experiencing severe reduction in populations across its range in Pakistan. We examined a chloroplast DNA region (trnL-F) and ten nuclear microsatellite loci variations among seven populations to investigate the levels of genetic diversity and reconstruct the demographic history of T. contorta in Pakistan. A low haplotype diversity (H T?=?0.182), moderate level of microsatellite diversity (H E?=?0.541?±?0.034), significant population differentiation (F ST?=?0.107) and high level of inbreeding (F IS?=?0.219–0.418) characterized this species. Results of an approximate Bayesian computation (ABC), mismatch distribution analysis, neutrality tests and data on glacial chronologies of the western Himalaya indicated a historic demographic expansion of T. contorta populations from small ancestral populations. This expansion is estimated to have occurred at least 37.5 thousand years ago (kya) during the late Pleistocene. An unprecedented level of habitat disturbance over the last few decades, coupled with the highly variable climate may have played an important role in shaping the genetic structure of the extant T. contorta populations. We have discussed a range of sustainable management measures for the ecological restoration of remnant populations as well as for a sustainable exploitation of this plant of high economic potential.  相似文献   

15.
The mountain gazelle (Gazella gazelle), Dorcas gazelle (Gazella Dorcas) and acacia gazelle (Gazella arabica acacia) were historically abundant in the southern Levant, and more specifically in Israel. Anthropogenic and natural changes have caused a rapid decline in gazelle populations, raising concerns about their conservation status and future survival. The genetic profile of 111 wild gazelles from Israel was determined based on three regions of mitochondrial DNA (control region, Cytochrome b and 12S ribosomal RNA) and nine nuclear microsatellite markers. Genetic analysis of the mountain gazelle population, the largest known population of this rare species, revealed adequate diversity levels and gene flow between subpopulations. Nevertheless, ongoing habitat degradation and other human effects, such as poaching, suggest the need for drastic measures to prevent species extinction. Dorcas gazelles in Israel displayed inbreeding within subpopulations while still maintaining considerable genetic diversity overall. This stable population, represented by a distinctive genetic profile, is fragmented and isolated from its relatives in neighboring localities. Based on the genetic profile of a newly sampled subpopulation in Israel, we provide an alternative hypothesis for the historic dispersal of Dorcas gazelle, from the Southern Levant to northern Africa. The small acacia gazelle population was closest to gazelles from the Farasan Islands of Saudi Arabia, based on mitochondrial markers. The two populations did not share haplotypes, suggesting that these two populations may be the last remnant wild gazelles of this species worldwide. Only a dozen acacia gazelles survive in Israel, and urgent steps are needed to ensure the survival of this genetically distinctive lineage. The genetic assessments of our study recognize new conservation priorities for each gazelle species in the Southern Levant.  相似文献   

16.
The results of the study of 21 populations of Siberian spruce (Picea obovata Ledeb.) from different parts of the species natural range by microsatellite (SSR) analysis of nuclear DNA are presented. Using nine loci developed for Picea abies (L.) Karst. and Picea glauca (Moench) Voss and detecting variation in Picea obovata, the parameters of intra- and interpopulation genetic diversity, as well as the degree of population differentiation, were determined. It was demonstrated that the population of Siberian spruce in the study was characterized by a relatively high average level of intrapopulation variability (Ho = 0.408; He = 0.423) and low interpopulation differentiation (Fst = 0.048, P = 0.001) at this class of DNA markers. The genetic distance between populations ranged from 0.009 to 0.167, averaging 0.039. The isolated Magadan population, located in the extreme Northeast of Russia at a considerable distance from the main species range and characterized by the lowest genetic diversity among the studied populations, was maximally differentiated from the rest of the spruce populations. In addition, the steppe Ubukun population from Buryatia and the population from the Bogd Khan Uul Biosphere Reserve, Mongolia, were considerably different in the genetic structure from most populations of Siberian spruce, although to a lesser extent than the Magadan population. These findings are consistent with the results of previous studies of this species carried out using allozyme and microsatellite loci of chloroplast DNA and point to the prospects of using nuclear microsatellites as DNA markers to analyze the population genetic structure of Siberian spruce.  相似文献   

17.
The Manchurian trout, Brachymystax lenok tsinlingensis (family: Salmonidae), is a cold freshwater fish endemic to Northeast Asia. South Korean populations of this species, which comprise its southern range limit, have recently decreased markedly in size and are now becoming critically endangered. We assessed the current population status of this species in South Korea by estimating the levels of genetic diversity and genetic structure of five natural and four restored populations using mitochondrial DNA (mtDNA) control region sequences and eight nuclear microsatellite loci. Levels of within-population genetic diversity were low, suggesting that past effective population sizes (N e) have been small. Each population had one or a maximum of two mtDNA haplotypes. Microsatellite allelic richness (AR) was significantly higher for natural populations (mean AR?=?3.51; 95% confidence interval, 3.00–4.03) than for restored populations (mean AR?=?2.61; 2.38–2.98). South Korean populations were significantly genetically isolated from one another, with private mtDNA haplotypes and microsatellite alleles, suggesting that limited gene flow has been occurring among populations. A mtDNA phylogeny revealed that South Korean lineages were more closely related to those of China than to those of North Korea and Russia. Overall, we suggest that future restoration efforts aimed at South Korean populations should consider the genetic characteristics reported here, which should help to fulfil effective conservation strategies for this highly cherished species. Our results will inform other conservation efforts, including assisted migration of freshwater fish populations at the equatorial end of the geographical range limit of the species.  相似文献   

18.
The maintenance of both spatial and genetic connectivity is paramount to the long-term persistence of small, isolated populations living in environments with extreme climates. We aim to identify the distribution of genetic diversity and assess population sub-structuring and dispersal across dwarfed desert populations of Crocodylus suchus, which occur in isolated groups, usually less than five individuals, along the mountains of Mauritania (West Africa). We used both invasive and non-invasive sampling methods and a combination of mitochondrial DNA (12 S and ND4) and microsatellite markers (32 loci and a subset of 12 loci). Our results showed high genetic differentiation and geographic structure in Mauritanian populations of C. suchus. We identified a metapopulation system acting within four river sub-basins (high gene flow and absence of genetic structure) and considerable genetic differentiation between sub-basins (F ST range: 0.12–0.24) with rare dispersal events. Effective population sizes tend to be low within sub-basins while genetic diversity is maintained. Our study suggests that hydrographic networks (temporal connections along seasonal rivers during rainy periods) allow C. suchus to disperse and maintain metapopulation dynamics within sub-basins, which attenuate the loss of genetic diversity and the risk of extinction. We highlight the need of hydrographic conservation to protect vulnerable crocodiles isolated in small water bodies. We propose C. suchus as an umbrella species in Mauritania based on ecological affinities shared with other water-dependent species in desert environments.  相似文献   

19.
The well known ornamental plant, Osmanthus fragrans, is one of the rare androdioecious species in nature. Determining the genetic diversity of this species may assist in its conservation and genetic improvement. Data of 10 ancient tree populations of O. fragrans were used to assess its genetic diversity and population structure with microsatellite markers. A high level of genetic diversity was observed with POPGENE. As anticipated the heterozygosity of ancient hermaphrodite trees was higher than male ones, although the number of hermaphrodites was far fewer than males. Abundant gene exchange between males and hermaphrodites was detected, and trees from the same population often clustered together. Androdioecy is an important factor that determines the genetic structure of O. fragrans and there is an urgent need to conserve ancient O. fragrans germplasms especially the hermaphrodites.  相似文献   

20.
The leatherback turtle Dermochelys coriacea is the most widely distributed sea turtle species in the world. It exhibits complex life traits: female homing and migration, migrations of juveniles and males that remain poorly known, and a strong climatic influence on resources, breeding success and sex-ratio. It is consequently challenging to understand population dynamics. Leatherbacks are critically endangered, yet the group from the Northwest Atlantic is currently considered to be under lower risk than other populations while hosting some of the largest rookeries. Here, we investigated the genetic diversity and the demographic history of contrasted rookeries from this group, namely two large nesting populations in French Guiana, and a smaller one in the French West Indies. We used 10 microsatellite loci, of which four are newly isolated, and mitochondrial DNA sequences of the control region and cytochrome b. Both mitochondrial and nuclear markers revealed that the Northwest Atlantic stock of leatherbacks derives from a single ancestral origin, but show current genetic structuration at the scale of nesting sites, with the maintenance of migrants amongst rookeries. Low nuclear genetic diversities are related to founder effects that followed consequent bottlenecks during the late Pleistocene/Holocene. Most probably in response to climatic oscillations, with a possible influence of early human hunting, female effective population sizes collapsed from 2 million to 200. Evidence of founder effects and high numbers of migrants make it possible to reconsider the population dynamics of the species, formerly considered as a metapopulation model: we propose a more relaxed island model, which we expect to be a key element in the currently observed recovering of populations. Although these Northwest Atlantic rookeries should be considered as a single evolutionary unit, we stress that local conservation efforts remain necessary since each nesting site hosts part of the genetic diversity and species history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号